Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 10 2019 lúc 15:22

Vì A, B, C là ba góc của tam giác nên ta có : A + B + C = π.

⇒ C = π - (A + B); A + B = π - C

a) Ta có: tan A + tan B + tan C = (tan A + tan B) + tan C

= tan (A + B). (1 – tan A.tan B) + tan C

= tan (π – C).(1 – tan A. tan B) + tan C

= -tan C.(1 – tan A. tan B) + tan C

= -tan C + tan A. tan B. tan C + tan C

= tan A. tan B. tan C

b) sin 2A + sin 2B + sin 2C

= 2. sin (A + B). cos (A – B) + 2.sin C. cos C

= 2. sin (π – C). cos (A – B) + 2.sin C. cos (π – (A + B))

= 2.sin C. cos (A – B) - 2.sin C. cos (A + B)

= 2.sin C.[cos (A – B) - cos (A + B)]

= 2.sin C.[-2sinA. sin(- B)]

= 2.sin C. 2.sin A. sin B ( vì sin(- B)= - sinB )

= 4. sin A. sin B. sin C

Thảo Trịnh
Xem chi tiết
Akai Haruma
27 tháng 2 2020 lúc 12:45

Lời giải:

Ta có:

$\sin 2A+\sin 2B=2\sin \frac{2A+2B}{2}\cos \frac{2A-2B}{2}=2\sin (A+B)\cos (A-B)$

$=2\sin (\pi -C)\cos (A-B)=2\sin C\cos (A-B) $

Do đó:

$\sin 2A+\sin 2B+\sin 2C=\sin 2C+2\sin C\cos (A-B)=2\sin C\cos C+2\sin C\cos (A-B)$

$=2\sin C[\cos C+\cos (A-B)]=2\sin C[\cos (\pi -A-B)+\cos (A-B)]$

$=2\sin C[\cos (A-B)-\cos (A+B)]=-2.\sin C[\cos (A+B)-\cos (A-B)]$

$=-2\sin C. (-2).\sin \frac{(A+B)+(A-B)}{2}.\sin \frac{(A+B)-(A-B)}{2}=4\sin C.\sin A.\sin B$

Ta có đpcm.

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 1 2017 lúc 16:51

Đáp án cần chọn là: A

Danh Lê
Xem chi tiết
Lấp La Lấp Lánh
1 tháng 9 2021 lúc 17:58

a) Xét tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2\)(Định lý Pytago)

\(\Rightarrow AC^2=BC^2-AB^2=10^2-6^2=64\Rightarrow AC=8\left(cm\right)\)

Xét tam giác ABC vuông tại A có đường cao AH

\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)(hệ thức lượng trong tam giác vuông)

\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}=\dfrac{25}{576}\Rightarrow AH=\dfrac{24}{5}\left(cm\right)\)

Xét tứ giác AEHF có:

\(\widehat{AEH}=\widehat{EAF}=\widehat{AFH}=90^0\)

=> Tứ giác AEHF là hình chữ nhật

=> \(EF=AH=\dfrac{24}{5}\left(cm\right)\)

b) Áp dụng tỉ số lượng giác của góc nhọn trong tam giác ABH và tam giác AHC vuông tại H:

\(AH^2=AE.AB\)

\(AH^2=AF.AC\)

\(\Rightarrow AE.AB=AF.AC\)

 

Nguyễn Lê Phước Thịnh
1 tháng 9 2021 lúc 22:08

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=10^2-6^2=64\)

hay AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AB\cdot AC=AH\cdot BC\)

hay AH=4,8(cm)

Xét tứ giác AEHF có 

\(\widehat{EAF}=\widehat{AFH}=\widehat{AEH}=90^0\)

Do đó: AEHF là hình chữ nhật

Suy ra: AH=EF

hay FE=4,8(cm)

b: Xét ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

phan thuy linh
Xem chi tiết
Lấp La Lấp Lánh
15 tháng 12 2021 lúc 11:09

Xét tam giác AEF và tam giác ABC có:

A chung

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\left(=cosA\right)\)

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=cos^2A=1-sin^2A\)

Nguyễn Hoàng Minh
15 tháng 12 2021 lúc 11:09

\(1-\sin^2A=\cos^2A=\dfrac{AF^2}{AC^2}\left(1\right)\)

Ta có \(\widehat{AEB}=\widehat{AFC}=90^0\Rightarrow\Delta AEB\sim\Delta AFC\left(g.g\right)\)

\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\\ \Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AF}{AC}\right)^2=\dfrac{AF^2}{AC^2}\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\)

Đặng Thuý Trang
Xem chi tiết
Quý Như
Xem chi tiết
Khánh Linh Bùi
Xem chi tiết
2003
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 4 2019 lúc 21:49

\(sin2A+sin2B+sin2C=2sin\left(A+B\right).cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC.cos\left(A-B\right)+2sinC.cosC=2sinC\left[cos\left(A-B\right)+cosC\right]\)

\(=4sinC.cos\left(\frac{A+C-B}{2}\right).cos\left(\frac{A-B-C}{2}\right)\)

\(=4sinC.cos\left(\frac{\pi-2B}{2}\right).cos\left(\frac{2A-\pi}{2}\right)=4sinC.cos\left(\frac{\pi-2B}{2}\right).cos\left(\frac{\pi-2A}{2}\right)\)

\(=4sinC.cos\left(\frac{\pi}{2}-B\right).cos\left(\frac{\pi}{2}-A\right)\)

\(=4sinA.sinB.sinC\)

chu do minh tuan
8 tháng 4 2019 lúc 20:18
https://i.imgur.com/Iy6thtc.png
Hứa Lê Thanh Phú
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 8 2023 lúc 1:39

a: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF vuông góc AC

nên AF*AC=AH^2

=>AE*AB=AF*AC

b: M=5*sin^2C+5*cos^2C+2*tanB*cot B

=5+2

=7