Ôn tập chương 2: Hàm số bậc nhất

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Danh Lê

Cho tam giác ABC vuông tại A có AB = 6cm, BC = 10cm, đường cao AH. Gọi E, F là hình chiếu của H lần lượt lên AB, AC

   a. Tính EF.       

   b. Chứng minh rằng: AE.AB = AF.AC      

   c. Tính: sin2B + sin2C – tanB.tanC

 

Lấp La Lấp Lánh
1 tháng 9 2021 lúc 17:58

a) Xét tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2\)(Định lý Pytago)

\(\Rightarrow AC^2=BC^2-AB^2=10^2-6^2=64\Rightarrow AC=8\left(cm\right)\)

Xét tam giác ABC vuông tại A có đường cao AH

\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)(hệ thức lượng trong tam giác vuông)

\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}=\dfrac{25}{576}\Rightarrow AH=\dfrac{24}{5}\left(cm\right)\)

Xét tứ giác AEHF có:

\(\widehat{AEH}=\widehat{EAF}=\widehat{AFH}=90^0\)

=> Tứ giác AEHF là hình chữ nhật

=> \(EF=AH=\dfrac{24}{5}\left(cm\right)\)

b) Áp dụng tỉ số lượng giác của góc nhọn trong tam giác ABH và tam giác AHC vuông tại H:

\(AH^2=AE.AB\)

\(AH^2=AF.AC\)

\(\Rightarrow AE.AB=AF.AC\)

 

Nguyễn Lê Phước Thịnh
1 tháng 9 2021 lúc 22:08

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=10^2-6^2=64\)

hay AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AB\cdot AC=AH\cdot BC\)

hay AH=4,8(cm)

Xét tứ giác AEHF có 

\(\widehat{EAF}=\widehat{AFH}=\widehat{AEH}=90^0\)

Do đó: AEHF là hình chữ nhật

Suy ra: AH=EF

hay FE=4,8(cm)

b: Xét ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)


Các câu hỏi tương tự
LÊ PHƯƠNG lớp 8/6 MS:35
Xem chi tiết
Nhân Dâm
Xem chi tiết
đậu văn khoa
Xem chi tiết
Nguyễn Thành Nam
Xem chi tiết
Bich Hong
Xem chi tiết
Bich Hong
Xem chi tiết
phuong hoang
Xem chi tiết
Tú72 Cẩm
Xem chi tiết
Phương Phương
Xem chi tiết