Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
⚚TᕼIêᑎ_ᒪý⁀ᶜᵘᵗᵉ
Xem chi tiết
Xyz OLM
15 tháng 3 2023 lúc 19:54

Mình sửa lại đề : x2 - 5x + m = 0 (1)

Với m = 6 

Phương trình trở thành : 

x2 - 5x + 6 = 0 

\(\Delta=\left(-5\right)^2-4.1.6=1>0\)

=> Phương trình 2 nghiệm phân biệt 

\(x_1=\dfrac{5+\sqrt{1}}{2}=3;x_2=\dfrac{5-\sqrt{1}}{2}=2\)

Tập nghiệm S = {3;2} 

b) Với m = 0 có (1) <=>  x2 - 5x = 0  

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=0\end{matrix}\right.\)(loại)

Với \(m\ne0\) : có \(\Delta=25-4m\)

Phương trình có nghiệm khi \(\Delta\ge0\Leftrightarrow m\le\dfrac{25}{4}\)

Hệ thức Viete : \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)

Khi đó |x1 - x2| = 3

<=> (x1 - x2)2 = 9

<=> (x1 + x2)2 - 4x1x2 = 9

<=> 52 - 4m = 9

<=> m = 4 (tm)

Vậy m = 4 thì thóa mãn yêu cầu đề

ngan kim
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 lúc 22:40

\(\Delta'=m^2-\left(m^2+2m-6\right)=-2m+6\)

a.

Pt có nghiệm khi \(-2m+6\ge0\Rightarrow m\le3\)

b.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2+2m-6\end{matrix}\right.\)

c.

\(x_1x_2=3x_1+3x_2-1\)

\(\Leftrightarrow x_1x_2=3\left(x_1+x_2\right)-1\)

\(\Leftrightarrow m^2+2m-6=3.2m-1\)

\(\Leftrightarrow m^2-4m-5=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=5>3\left(loại\right)\end{matrix}\right.\)

NOOB
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 3 2023 lúc 17:44

a. Em tự giải

b. 

\(\Delta=4-3\left(m+5\right)>0\Rightarrow m< -\dfrac{11}{3}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{4}{3}\\x_1x_2=\dfrac{m+5}{3}\end{matrix}\right.\)

Để biểu thức đề bài xác định \(\Rightarrow x_1x_2\ne0\Rightarrow m\ne-5\)

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{4}{7}\) \(\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{4}{7}\)

\(\Leftrightarrow\dfrac{4}{m+5}=\dfrac{4}{7}\)

\(\Rightarrow m+5=7\)

\(\Rightarrow m=2\) (ktm)

Vậy ko tồn tại m thỏa mãn yêu cầu đề bài

T . Anhh
11 tháng 3 2023 lúc 17:49
NOOB
Xem chi tiết
Phước Lộc
9 tháng 4 2023 lúc 15:05

a: Khi m = -4 thì:

\(x^2-5x+\left(-4\right)-2=0\)

\(\Leftrightarrow x^2-5x-6=0\)

\(\Delta=\left(-5\right)^2-5\cdot1\cdot\left(-6\right)=49\Rightarrow\sqrt{\Delta}=\sqrt{49}=7>0\)

Pt có 2 nghiệm phân biệt:

\(x_1=\dfrac{5+7}{2}=6;x_2=\dfrac{5-7}{2}=-1\)

Phước Lộc
9 tháng 4 2023 lúc 15:19

b: \(\Delta=\left(-5\right)^2-4\left(m-2\right)=25-4m+8=33-4m\)

Theo viet:

\(x_1+x_2=-\dfrac{b}{a}=5\)

\(x_1x_2=\dfrac{c}{a}=m-2\)

Để pt có 2 nghiệm dương phân biệt:

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}33-4m>0\\5>0\left(TM\right)\\m-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{33}{4}\\x>2\end{matrix}\right.\Leftrightarrow m=2< m< \dfrac{33}{4}\)

Vậy \(2< m< \dfrac{33}{4}\) thì pt có 2 nghiệm dương phân biệt.

Theo đầu bài: \(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{3}{2}\)

\(\Leftrightarrow\sqrt{x_1}+\sqrt{x_2}=\dfrac{3}{2}\left(\sqrt{x_1x_2}\right)\)

\(\Leftrightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=\dfrac{9}{4}x_1x_2\)

\(\Leftrightarrow x_1+2\sqrt{x_1x_2}+x_2=\dfrac{9}{4}x_1x_2\)

\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=\dfrac{9}{4}x_1x_2\)

\(\Leftrightarrow5+2\sqrt{x_1x_2}=\dfrac{9}{4}\left(m-2\right)\)

\(\Leftrightarrow\dfrac{9}{4}\left(m-2\right)-2\sqrt{m-2}-5=0\)

Đặt \(\sqrt{m-2}=t\Rightarrow m-2=t^2\)

\(\Rightarrow\dfrac{9}{4}t^2-2t-5=0\)

\(\Leftrightarrow\dfrac{9}{4}t^2-2+\left(-5\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(9t+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t-2=0\\9t+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=2\left(TM\right)\\t=-\dfrac{10}{9}\left(\text{loại}\right)\end{matrix}\right.\)

Trả ẩn:

\(\sqrt{m-2}=2\)

\(\Rightarrow m-2=4\)

\(\Rightarrow m=6\)

Vậy m = 6 thì x1 , x2 thoả mãn hệ thức \(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)=\dfrac{3}{2}\).

DŨNG
Xem chi tiết
Akai Haruma
26 tháng 5 2022 lúc 17:56

Lời giải:

Để pt có 2 nghiệm thì: $\Delta=25-4(m-2)\geq 0$

$\Leftrightarrow m\leq \frac{33}{4}$

Áp dụng hệ thức Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:

$x_1+x_2=-5$

$x_1x_2=m-2$

Khi đó:

$\frac{1}{x_1-1}+\frac{1}{x_2-1}=2$

$\Leftrightarrow \frac{x_1+x_2-2}{(x_1-1)(x_2-1)}=2$

$\Leftrightarrow \frac{-5-2}{(x_1-1)(x_2-1)}=2$

$\Leftrightarrow (x_1-1)(x_2-1)=\frac{-7}{2}$

$\Leftrightarrow x_1x_2-(x_1+x_2)+1=\frac{-7}{2}$

$\Leftrightarrow m-2+5+1=\frac{-7}{2}$

$\Leftrightarrow m=\frac{-15}{2}$ (tm)

Akai Haruma
26 tháng 5 2022 lúc 17:57

Lời giải:

Để pt có 2 nghiệm thì: $\Delta=25-4(m-2)\geq 0$

$\Leftrightarrow m\leq \frac{33}{4}$

Áp dụng hệ thức Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:

$x_1+x_2=-5$

$x_1x_2=m-2$

Khi đó:

$\frac{1}{x_1-1}+\frac{1}{x_2-1}=2$

$\Leftrightarrow \frac{x_1+x_2-2}{(x_1-1)(x_2-1)}=2$

$\Leftrightarrow \frac{-5-2}{(x_1-1)(x_2-1)}=2$

$\Leftrightarrow (x_1-1)(x_2-1)=\frac{-7}{2}$

$\Leftrightarrow x_1x_2-(x_1+x_2)+1=\frac{-7}{2}$

$\Leftrightarrow m-2+5+1=\frac{-7}{2}$

$\Leftrightarrow m=\frac{-15}{2}$ (tm)

nguyen ngoc son
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 2 2022 lúc 21:17

a: Thay m=6 vào pt, ta được:

\(x^2-5x+6=0\)

=>x=2 hoặc x=3

b: \(\text{Δ}=\left(-5\right)^2-4m=-4m+25\)

để phương trình có hai nghiệm thì -4m+25>=0

=>-4m>=-25

hay m<=25/4

Theo đề, ta có: 

\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=3\)

\(\Leftrightarrow25-4m=9\)

=>m=4

ILoveMath
23 tháng 2 2022 lúc 21:19

a, Thay m=6 vào pt ta có:

\(x^2-5x+6=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

b, Để pt có 2 nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow\left(-5\right)^2-4.1.m\ge0\\ \Leftrightarrow25-4m\ge0\\ \Leftrightarrow m\le\dfrac{25}{4}\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)

\(\left|x_1-x_2\right|=3\\ \Leftrightarrow\left(x_1-x_2\right)^2=3\\ \Leftrightarrow x^2_1+x^2_2-2x_1x_2=9\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\\ \Leftrightarrow5^2-4m=9\\ \Leftrightarrow25-4m=9\\ \Leftrightarrow m=4\left(tm\right)\)

⚚TᕼIêᑎ_ᒪý⁀ᶜᵘᵗᵉ
Xem chi tiết
Xyz OLM
4 tháng 4 2023 lúc 23:10

a) Ta có :  \(\Delta"=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\forall m\)

=> Phương trình luôn có 2 nghiệm phân biệt

b) Hệ thức Viete : 

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-2\end{matrix}\right.\)

Khi đó \(M=\dfrac{-24}{x_1^2+x_2^2-6x_1x_2}=\dfrac{-24}{\left(x_1+x_2\right)^2-8x_1x_2}\)

\(=\dfrac{-24}{\left(2m\right)^2-8.\left(m-2\right)}=\dfrac{-6}{m^2-2m+4+=}=\dfrac{-6}{\left(m-1\right)^2+3}\)

Do (m - 1)2 + 3 \(\ge3\forall m\)

nên \(\dfrac{6}{\left(m-1\right)^2+3}\le2\Leftrightarrow M=\dfrac{-6}{\left(m-1\right)^2+3}\ge-2\)

Vậy Mmin = -2 <=> m = 1

Phạm Quỳnh Anh
Xem chi tiết
Phạm Quỳnh Anh
14 tháng 3 2022 lúc 8:00

Moij người giúp mình với ạ mình đang cần gấp ạ

 

Nott mee
Xem chi tiết
Nguyễn Hoàng Minh
4 tháng 1 2022 lúc 9:29

PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta=\left(2m-3\right)^2-4\left(m-3\right)=9>0\)

Vậy PT có 2 nghiệm phân biệt với mọi m

Ta có \(\left[{}\begin{matrix}x_1=\dfrac{2m-3+3}{2}=m\\x_2=\dfrac{2m-3-3}{2}=m-3\end{matrix}\right.\)

Ta thấy \(m>m-3\) nên \(1< m-3< m< 6\Leftrightarrow4< m< 6\)

Vậy \(4< m< 6\)  thỏa yêu cầu đề