Lời giải:
Để pt có 2 nghiệm thì: $\Delta=25-4(m-2)\geq 0$
$\Leftrightarrow m\leq \frac{33}{4}$
Áp dụng hệ thức Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:
$x_1+x_2=-5$
$x_1x_2=m-2$
Khi đó:
$\frac{1}{x_1-1}+\frac{1}{x_2-1}=2$
$\Leftrightarrow \frac{x_1+x_2-2}{(x_1-1)(x_2-1)}=2$
$\Leftrightarrow \frac{-5-2}{(x_1-1)(x_2-1)}=2$
$\Leftrightarrow (x_1-1)(x_2-1)=\frac{-7}{2}$
$\Leftrightarrow x_1x_2-(x_1+x_2)+1=\frac{-7}{2}$
$\Leftrightarrow m-2+5+1=\frac{-7}{2}$
$\Leftrightarrow m=\frac{-15}{2}$ (tm)
Lời giải:
Để pt có 2 nghiệm thì: $\Delta=25-4(m-2)\geq 0$
$\Leftrightarrow m\leq \frac{33}{4}$
Áp dụng hệ thức Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:
$x_1+x_2=-5$
$x_1x_2=m-2$
Khi đó:
$\frac{1}{x_1-1}+\frac{1}{x_2-1}=2$
$\Leftrightarrow \frac{x_1+x_2-2}{(x_1-1)(x_2-1)}=2$
$\Leftrightarrow \frac{-5-2}{(x_1-1)(x_2-1)}=2$
$\Leftrightarrow (x_1-1)(x_2-1)=\frac{-7}{2}$
$\Leftrightarrow x_1x_2-(x_1+x_2)+1=\frac{-7}{2}$
$\Leftrightarrow m-2+5+1=\frac{-7}{2}$
$\Leftrightarrow m=\frac{-15}{2}$ (tm)