\(\text{Δ}=\left(-2m\right)^2-4\left(2m-3\right)=4m^2-8m+12\)
\(=4m^2-8m+4+8\)
\(=\left(2m-2\right)^2+8>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-3\end{matrix}\right.\)
Ta có: \(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}=1\)
\(\Leftrightarrow\dfrac{x_2-1+x_1-1}{\left(x_1-1\right)\left(x_2-1\right)}=1\)
\(\Leftrightarrow\dfrac{2m-2}{x_1x_2-\left(x_1+x_2\right)+1}=1\)
\(\Leftrightarrow\dfrac{2m-2}{2m-3-2m+1}=1\)
\(\Leftrightarrow2m-2=1\cdot\left(-2\right)=-2\)
=>2m=0
hay m=0
Ptr có `2` nghiệm `<=>\Delta' >= 0`
`<=>(-m)^2-(2m-3) >= 0`
`<=>m^2-2m+3 >= 0<=>(m-1)^2+2 >= 0` (LĐ)
`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=2m),(x_1.x_2=c/a=2m-3):}`
Ta có:`1/[x_1-1]+1/[x_2-1]=1`
`<=>[x_2-1+x_1-1]/[(x_1-1)(x_2-1)]=1`
`<=>[x_1+x_2-2]/[x_1.x_2-x_1-x_2+1]=1`
`<=>[2m-2]/[2m-3-2m+1]=1
`<=>[2m-2]/[-2]=1`
`<=>2m-2=-2`
`<=>2m=0<=>m=0`