Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
DUTREND123456789

\(x^2-2mx-m^2-1=0\) (1)

a) Giải phương trình (1) khi `m = 2`

b) Tìm giá trị của tham số m để phương trình (1) có 2 nghiệm \(X_1;X_2\) thỏa mãn:

\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=-\dfrac{5}{2}\)

Tô Mì
19 tháng 1 lúc 21:39

(a) Khi \(m=2,\left(1\right)\Leftrightarrow x^2-4x-5=0\left(2\right)\).

Phương trình (2) có \(a-b+c=1-\left(-4\right)+\left(-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{c}{a}=5\end{matrix}\right.\).

Vậy: Khi \(m=2,S=\left\{-1;5\right\}\).

 

(b) Điều kiện: \(x_1,x_2\ne0\Rightarrow m\in R\)

Phương trình có nghiệm khi:

\(\Delta'=\left(-m\right)^2-1\cdot\left(-m^2-1\right)\ge0\)

\(\Leftrightarrow2m^2+1\ge0\left(LĐ\right)\)

Suy ra, phương trình (1) có nghiệm với mọi \(m\).

Theo định lí Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1x_2=\dfrac{c}{a}=-m^2-1\end{matrix}\right.\)

Theo đề: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=-\dfrac{5}{2}\)

\(\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}=-\dfrac{5}{2}\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\dfrac{5}{2}\)

\(\Leftrightarrow2\left(x_1+x_2\right)^2+x_1x_2=0\)

\(\Leftrightarrow2\left(2m\right)^2+\left(-m^2-1\right)=0\)

\(\Leftrightarrow7m^2=1\Leftrightarrow m=\pm\dfrac{\sqrt{7}}{7}\) (thỏa mãn).

Vậy: \(m=\pm\dfrac{\sqrt{7}}{7}.\)


Các câu hỏi tương tự
....
Xem chi tiết
꧁Gιʏuu ~ Cнᴀɴ꧂
Xem chi tiết
Hoàng Tiến Long
Xem chi tiết
ĐỖ NV1
Xem chi tiết
Nguyên
Xem chi tiết
Ngọc Mai
Xem chi tiết
Nguyễn Minh Ngọc
Xem chi tiết
Nguyễn Minh Anh
Xem chi tiết
Lê Duy Thanh
Xem chi tiết