\(\Delta'=\left(-1\right)^2-\left(m-1\right)=1-m+1=2-m\)
Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2-m\ge0\Leftrightarrow m\le2\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-1\end{matrix}\right.\)
\(x^4_1-x^3_1=x^4_2-x^3_2\\ \Leftrightarrow\left(x^4_1-x_2^4\right)-\left(x^3_1+x^3_2\right)=0\\ \Leftrightarrow\left(x^2_1-x^2_2\right)\left(x^2_1+x^2_2\right)-\left(x_1+x_2\right)\left(x^2_1+x^2_2-x_1x_2\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=0\\ \Leftrightarrow\left(m-1\right).2\left[2^2-2\left(m-1\right)\right]-2\left[2^2-3\left(m-1\right)\right]=0\)
\(\Leftrightarrow\left(2m-2\right)\left(4-2m+2\right)-2\left(4-3m+3\right)=0\)
\(\Leftrightarrow\left(2m-2\right)\left(6-2m\right)-2\left(7-3m\right)=0\)
\(\Leftrightarrow...\)
\(\Delta'=\left(-1\right)^2-\left(m-1\right)=1-m+1=2-m\)
Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2-m\ge0\Leftrightarrow m\le2\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-1\end{matrix}\right.\)
\(x^4_1-x^3_1=x^4_2-x^3_2\\ \Leftrightarrow\left(x^4_1-x_2^4\right)-\left(x^3_1-x^3_2\right)=0\\ \Leftrightarrow\left(x^2_1-x^2_2\right)\left(x^2_1+x^2_2\right)-\left(x_1-x_2\right)\left(x^2_1+x^2_2+x_1x_2\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]=0\)
\(\Leftrightarrow\left(x_1-x_2\right).2\left(4-2m+2\right)-\left(x_1-x_2\right)\left(4-m+1\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right).2\left(6-2m\right)-\left(x_1-x_2\right)\left(5-m\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(12-4m-5+m\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(7-3m\right)=0\)
\(\Leftrightarrow...\)