Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiếng anh123456
Xem chi tiết
Tutu
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 4 2021 lúc 22:04

Bài 2: 

a) Ta có: \(\Delta=\left(m-1\right)^2-4\cdot1\cdot\left(-m^2-2\right)\)
\(=m^2-2m+1+4m^2+8\)

\(=5m^2-2m+9>0\forall m\)

Do đó, phương trình luôn có hai nghiệm phân biệt với mọi m

HT2k02
6 tháng 4 2021 lúc 22:28

Bài 1:

ĐKXĐ \(2x\ne y\)

Đặt \(\dfrac{1}{2x-y}=a;x+3y=b\)

HPT trở thành

\(\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\4a-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\4\left(\dfrac{3}{2}-b\right)-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\6-9b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{8}{9}\\a=\dfrac{11}{18}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\dfrac{8}{9}\\2x-y=\dfrac{18}{11}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2x-\dfrac{18}{11}\\x+3\left(2x-\dfrac{18}{11}\right)=\dfrac{8}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{82}{99}\\y=\dfrac{2}{99}\end{matrix}\right.\)

Châu Công Hải
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 2 2022 lúc 21:37

b.

Với \(x=0\) không phải nghiệm

Với \(x\ne0\) hệ tương đương:

\(\left\{{}\begin{matrix}\dfrac{y}{x^2}+\dfrac{y^2}{x}=-6\\\dfrac{1}{x^3}+y^3=19\end{matrix}\right.\)

Đặt \(\left(\dfrac{1}{x};y\right)=\left(u;v\right)\) ta được: \(\left\{{}\begin{matrix}uv^2+u^2v=-6\\u^3+v^3=19\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3uv^2+3u^2v=-18\\u^3+v^3+19\end{matrix}\right.\)

Cộng vế với vế:

\(\left(u+v\right)^3=1\Rightarrow u+v=1\)

Thay vào \(u^2v+uv^2=-6\Rightarrow uv=-6\)

Theo Viet đảo, u và v là nghiệm của:

\(t^2-t-6=0\) \(\Rightarrow\left[{}\begin{matrix}t=-2\\t=3\end{matrix}\right.\) \(\Rightarrow\left(u;v\right)=\left(-2;3\right);\left(3;-2\right)\)

\(\Rightarrow\left(\dfrac{1}{x};y\right)=\left(-2;3\right);\left(3;-2\right)\)

\(\Rightarrow\left(x;y\right)=\left(-\dfrac{1}{2};3\right);\left(\dfrac{1}{3};-2\right)\)

Nguyễn Việt Lâm
17 tháng 2 2022 lúc 21:33

a.

ĐKXĐ: \(x\ne3\)

- Với \(x\ge0\) pt trở thành:

\(\dfrac{x^2-x-12}{x-3}=2x\Rightarrow x^2-x-12=2x^2-6x\)

\(\Leftrightarrow x^2-5x+12=0\) (vô nghiệm)

- Với \(x< 0\) pt trở thành:

\(\dfrac{x^2+x-12}{x-3}=2x\Rightarrow\dfrac{\left(x-3\right)\left(x+4\right)}{x-3}=2x\)

\(\Rightarrow x+4=2x\Rightarrow x=4>0\) (ktm)

Vậy pt đã cho vô nghiệm

nguyen ngoc son
Xem chi tiết
Nguyễn Huy Tú
5 tháng 2 2022 lúc 22:28

a. Thay m = 1 ta được 

\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)

b, Để hpt có nghiệm duy nhất khi \(\dfrac{1}{2}\ne-\dfrac{2}{3}\)*luôn đúng*

\(\left\{{}\begin{matrix}2x+4y=2m+6\\2x-3y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=m+6\\x=m+3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{m+6}{7}\\x=m+3-2\dfrac{m+6}{7}\end{matrix}\right.\)

\(\Leftrightarrow x=m+3-\dfrac{2m+12}{7}=\dfrac{7m+21-2m-12}{7}=\dfrac{5m+9}{7}\)

Ta có : \(\dfrac{m+6}{7}+\dfrac{5m+9}{7}=-3\Rightarrow6m+15=-21\Leftrightarrow m=-6\)

Đào Tùng Dương
5 tháng 2 2022 lúc 22:37

\(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)

\(a,Khi.m=1\Rightarrow\left\{{}\begin{matrix}x+2y=1+3\\2x-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\2\left(4-2y\right)-3y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4-2y\\8-4y-3y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4-2y\\7y=7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\rightarrow\left(x,y\right)=\left(2,1\right)\)

\(b,\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2m+6\left(1\right)\\2x-3y=m\left(2\right)\end{matrix}\right.\)

\(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}7y=m+6\\x+2y=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+9}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\Rightarrow\) HPT có no duy nhất 

\(\left(x,y\right)=\left(\dfrac{5m+9}{7};\dfrac{m+6}{7}\right)\)

\(x+y=-3\)

\(\dfrac{5m+9}{7}+\dfrac{m+6}{7}=-3\)

\(\Leftrightarrow5m+9+m+6=-21\)

\(\Leftrightarrow6m=-36\Rightarrow m=-6\)

Với m = -6 thì hệ pt có no duy nhất TM x + y = -3

ILoveMath
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 10 2021 lúc 16:20

Ta có \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-y\right)^3+\left(y-x+x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3+\left(y-x\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-x+x-z\right)+\left(x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3-\left(x-y\right)^3+\left(x-z\right)^3-\left(x-z\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-z\right)\\ =3\left(y-x\right)\left(x-z\right)\left(y-z\right)\)

Thay vào pt

\(\Leftrightarrow\left(y-x\right)\left(x-z\right)\left(y-z\right)=10\)

Dễ thấy \(y-z\) là tổng của \(y-x;x-z\)

Mà \(Ư\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\) và ko có số nào là tổng 2 số còn lại có tích bằng 10

Vậy pt vô nghiệm

 

 

Thị Thiệm Lê
Xem chi tiết
Trên con đường thành côn...
27 tháng 2 2022 lúc 10:12

Xét \(y=0\)\(\Rightarrow...\)

Xét \(y\ne0\). Ta có:

\(\left\{{}\begin{matrix}x^2+y^2+xy+2x=5y\\\left(x^2+2x\right)\left(x+y-3\right)=-3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2x=5y-y^2-xy\left(1\right)\\\left(x^2+2x\right)\left(x+y-3\right)=-3y\left(2\right)\end{matrix}\right.\)

Thay (1) vào (2), ta có:

\(\left(5y-y^2-xy\right)\left(x+y-3\right)=-3y\)

\(-y\left(x+y-5\right)\left(x+y-3\right)=-3y\)

\(\Leftrightarrow\left(x+y-5\right)\left(x+y-3\right)=3\left(\cdot\right)\)

Đặt \(x+y-5=t\), phương trình \(\left(\cdot\right)\) trở thành

\(t\left(t+2\right)=3\)\(\Leftrightarrow t^2+2t+1=4\Leftrightarrow\left(t+1\right)^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}t+1=2\\t+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y-5=1\\x+y-5=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=6\\x+y=2\end{matrix}\right.\)\(\Rightarrow...\)

 

Princess U
Xem chi tiết
Nguyễn Linh Chi
21 tháng 2 2019 lúc 8:18

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

Incursion_03
21 tháng 2 2019 lúc 8:25

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

Princess U
21 tháng 2 2019 lúc 17:29

cảm ơn mọi người ạ <3

le diep
Xem chi tiết
Hoàng Thảo
23 tháng 11 2017 lúc 18:54

\(\hept{\begin{cases}\left(2x-3\right)\left(2y+4\right)=4x\left(y-3\right)+54\\\left(x+1\right)\left(3y-3\right)=3y\left(x+1\right)-12\end{cases}}\)

\(\hept{\begin{cases}4xy+8x-6y-12=4xy-12x+54\\3xy-3x+3y-3=3xy+3y-12\end{cases}}\)

\(\hept{\begin{cases}4xy-4xy+8x+12x-6y-12-54=0\\3xy-3xy-3x+3y-3y-3+12=0\end{cases}}\)

\(\hept{\begin{cases}20x-6y-66=0\\-3x+9=0\end{cases}}\)

\(\hept{\begin{cases}2\left(10x-3y\right)=66\\-3\left(x-3\right)=0\end{cases}}\)

\(\hept{\begin{cases}10x-3y=33\\x-3=0\end{cases}}\)

\(\hept{\begin{cases}10x-3y=33\\x=3\end{cases}}\)

Linh Bùi
Xem chi tiết
mikusanpai(՞•ﻌ•՞)
1 tháng 3 2021 lúc 11:48

a)

Khi m = 1, ta có:

{ x+2y=1+3   

  2x-3y=1

=> { x+2y=4

        2x-3y=1

=> { 2x+4y=8

        2x-3y=1

=> { x+2y=4

        2x-3y-2x-4y=1-8

=> { x=4-2y

       -7y = -7

=> { x = 2

        y = 1

Vậy khi m = 1 thì hệ phương trình có cặp nghệm

(x; y) = (2;1)

Khang Diệp Lục
1 tháng 3 2021 lúc 15:11

a) Thay m=1 vào HPT ta có: 

\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+4y=8\\7y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy HPT có nghiệm (x;y)= (2;1)

Khang Diệp Lục
1 tháng 3 2021 lúc 15:31

undefined