Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức Lâm
Xem chi tiết
Thanh Thanh
Xem chi tiết
Nguyễn Ngọc Huy Toàn
14 tháng 4 2022 lúc 14:39

Bài 1.

\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)

\(x_0^2+y_0^2=9m\)

\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)

\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)

\(\Leftrightarrow2m^2-7m+5=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )

Khả Vi_카뷔
Xem chi tiết
Nguyễn Hoàng Minh
1 tháng 1 2022 lúc 16:30

\(HPT\Leftrightarrow\left\{{}\begin{matrix}y=2x-3\\x+2mx-3m=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2x-3\\x\left(2m+1\right)=3m+1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3m+1}{2m+1}\\y=\dfrac{6m+2-6m-3}{2m+1}=\dfrac{-1}{2m+1}\end{matrix}\right.\)

Ta có \(mx+3y=1\Leftrightarrow\dfrac{3m^2+m}{2m+1}-\dfrac{3}{2m+1}=1\Leftrightarrow3m^2+m-3=2m+1\)

\(\Leftrightarrow3m^2-m-4=0\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{4}{3}\\m=-1\end{matrix}\right.\)

Tanh Nguyễn
22 tháng 1 2022 lúc 15:59

x=m+1/2m+1
y=-1/2m+1            thay x và y vào mx+3y=1 =) m^2-m-4/2m+1=0(1)
                                                       để (1) có nghĩa (=)2m+1 khác 0
                                                       =)m^2-m-4>=0
tìm m

 

nam do duy
Xem chi tiết
YangSu
9 tháng 3 2023 lúc 17:28

\(2)mx^2-2\left(m-1\right)x+m-1=0\)

Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow m=1\)

Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 12 2020 lúc 11:07

Lần lượt lấy pt (3) trừ pt (1) và pt (2) trừ 2 lần pt (1) ta được:

\(\left\{{}\begin{matrix}\left(m-1\right)y+4z=1\\y+\left(m+2\right)z=1\end{matrix}\right.\)

Hệ đã cho vô nghiệm khi:

\(\dfrac{1}{m-1}=\dfrac{m+2}{4}\ne\dfrac{1}{1}\)

\(\Leftrightarrow m=-3\)

Sennn
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 3 2022 lúc 21:45

Trừ vế cho vế:

\(\Rightarrow x^3-y^3=6\left(x^2-y^2\right)-m\left(x-y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-6\left(x+y\right)+m\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=y\\x^2+xy+y^2-6\left(x+y\right)+m=0\end{matrix}\right.\)

- Với \(x=y\Rightarrow x^3=8x^2-mx\Leftrightarrow x\left(x^2-8x+m\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-8x+m=0\end{matrix}\right.\)

Do đó hệ luôn luôn có nghiệm \(\left(x;y\right)=\left(0;0\right)\) với mọi m

Để hệ chỉ có 1 nghiệm thì \(x^2-8x+m=0\) vô nghiệm \(\Rightarrow m>16\)

Khi đó, xét pt \(x^2+xy+y^2-6\left(x+y\right)+m=0\) (1)

Ta có:

\(x^2+xy+y^2-6\left(x+y\right)+m>\dfrac{3}{4}\left(x+y\right)^2-6\left(x+y\right)+16=\dfrac{3}{4}\left(x+y-4\right)^2+4>0\)

\(\Rightarrow\) (1) vô nghiệm hay hệ có đúng 1 nghiệm \(\left(x;y\right)=\left(0;0\right)\)

Vậy \(m>16\) thì hệ có 1 nghiệm

Kimian Hajan Ruventaren
Xem chi tiết
nguyen thi vang
6 tháng 1 2021 lúc 20:42

\(\left\{{}\begin{matrix}x+my=9\\mx-3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9-my\\m\left(9-my\right)-3y=4\end{matrix}\right.\)(*)

(*) <=> \(9m-m^2y-3y=4\)

<=> \(-y\left(m^2+3\right)=4-9m\) 

Vì \(m^2+3\ge3\) >0 với mọi m

=> m2 + 3 khác 0

=> luôn có nghiệm y = \(\dfrac{9m-4}{m^2+3}\) với mọi m

b) Khi đó x= \(9-m.\dfrac{9m-4}{m^2+3}=\dfrac{9m^2+27-9m^2+4m}{m^2+3}=\dfrac{4m^2+27}{m^2+3}\)

Để \(x-3y=\dfrac{28}{m^2+3}-3\)

=> \(4m+27-27m+12=28-3m^2+9\)

<=> \(3m^2-3m-20m+20=0\)

<=> \(3m\left(m-1\right)-20\left(m-1\right)=0\) 

<=> \(\left(3m-20\right)\left(m-1\right)=0\)

<=> \(\left[{}\begin{matrix}m=\dfrac{20}{3}\\m=1\end{matrix}\right.\) 

Nott mee
Xem chi tiết
ĐINH THỊ HOÀNG ANH
20 tháng 1 2022 lúc 9:14

\(m_1=\dfrac{11}{2}\)

\(m_2=3\)

Nott mee
Xem chi tiết
some one
18 tháng 1 2022 lúc 22:01

thay X=-1, Y=3 giải phương trình ta được m=3