\(x^2+6x+2\sqrt{3}+5=0\)
d) \(\sqrt{x^2-12x+36}-x=3\)
e) \(\sqrt{x^2-4x+5}-1=x\)
f) \(\sqrt{x^2-6x+9}+x=3\)
h) \(\sqrt{18x}+\sqrt{32x}-14=0\)
k) \(\sqrt{6x-3}+2=\sqrt{3}\)
h: \(\sqrt{18x}+\sqrt{32x}-14=0\)
\(\Leftrightarrow7\sqrt{2x}=14\)
hay x=2
GIẢI PT SAU:
\(\sqrt{3x-3}-\sqrt{5-x}=\sqrt{2x-4}\)
\(x^2-6x+9=4\sqrt{x^2-6x+6}\)
\(x^2-x+8-4\sqrt{x^2-x+4}=0\)
b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)
\(\Rightarrow a^2+3-4a=0\)
=> (a - 3).(a - 1) = 0
=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)
Bình phương lên giải tiếp nhé!
c) Tương tư câu b nhé
Câu 5: Giải phương trình:
a. \(x\)\(\sqrt{3}\) - \(\sqrt{3}\) = \(1-x\)
b. \(7-\sqrt{x^2-6x+9}=0\)
c. \(\sqrt{9\left(x-2\right)^2}\) - 45 = 0
a) \(\Leftrightarrow\sqrt{3}\left(x-1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\sqrt{3}-1\right)=0\Leftrightarrow x=1\)
b) \(\Leftrightarrow\sqrt{\left(x-3\right)^2}=7\)
\(\Leftrightarrow\left|x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=7\\x-3=-7\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-4\end{matrix}\right.\)
c) \(\Leftrightarrow3\left|x-2\right|=45\)
\(\Leftrightarrow\left|x-2\right|=15\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=15\\x-2=-15\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=17\\x=-13\end{matrix}\right.\)
\(a,PT\Leftrightarrow\sqrt{3}\left(x-1\right)=1-x\\ \Leftrightarrow\sqrt{3}\left(x-1\right)+\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(\sqrt{3}+1\right)=0\\ \Leftrightarrow x=1\left(\sqrt{3}+1\ne0\right)\\ b,ĐK:x\in R\\ PT\Leftrightarrow\left|x-3\right|=7\Leftrightarrow\left[{}\begin{matrix}x-3=7\\3-x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-4\end{matrix}\right.\\ c,ĐK:x\in R\\ PT\Leftrightarrow3\left|x-2\right|=45\Leftrightarrow\left|x-2\right|=15\\ \Leftrightarrow\left[{}\begin{matrix}x-2=15\\2-x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=17\\x=-13\end{matrix}\right.\)
1) \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
2) \(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
1: \(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
=>căn x-3=0
=>x-3=0
=>x=3
2: =>\(\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+2\cdot\sqrt{2x-3}\cdot4+16}=5\)
=>\(\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)
=>2*căn 2x-3+5=5
=>2x-3=0
=>x=3/2
giải phương trình :
a, \(\sqrt{x-3}+\sqrt[3]{x^2+1}+x^2+x-2=0\)
b,\(4x^2+\sqrt{2x+3}=8x+1\)
c, \(2x^2-6x+10-5\left(x-2\right)\sqrt{x+1=0}\)
a.
ĐKXĐ: \(x\ge3\)
(Tốt nhất bạn kiểm tra lại đề cái căn đầu tiên của \(\sqrt{x-3}\) là căn bậc 2 hay căn bậc 3). Vì nhìn ĐKXĐ thì thấy căn bậc 2 là không hợp lý rồi đó
Pt tương đương:
\(\sqrt{x-3}+\sqrt[3]{x^2+1}+\left(x+1\right)\left(x-2\right)=0\)
Do \(x\ge3\Rightarrow x-2>0\Rightarrow\left(x+1\right)\left(x-2\right)>0\)
\(\Rightarrow\sqrt{x-3}+\sqrt[3]{x^2+1}+\left(x+1\right)\left(x-2\right)>0\)
Pt vô nghiệm
b.
ĐKXĐ: \(x\ge-\dfrac{3}{2}\)
Pt: \(2x+3-\sqrt{2x+3}-\left(4x^2-6x+2\right)=0\)
Đặt \(\sqrt{2x+3}=t\ge0\) ta được:
\(t^2-t-\left(4x^2-6x+2\right)=0\)
\(\Delta=1+4\left(4x^2-6x+2\right)=\left(4x-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t_1=\dfrac{1+4x-3}{2}=2x-1\\t_2=\dfrac{1-4x+3}{2}=2-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+3}=2x-1\left(x\ge\dfrac{1}{2}\right)\\\sqrt{2x+3}=2-2x\left(x\le1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=4x^2-4x+1\left(x\ge\dfrac{1}{2}\right)\\2x+3=4x^2-8x+4\left(x\le1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{17}}{4}\\x=\dfrac{5-\sqrt{21}}{4}\end{matrix}\right.\)
c.
ĐKXĐ: \(x\ge-1\)
\(\Leftrightarrow2\left(x^2-4x+4\right)+2\left(x+1\right)-5\left(x-2\right)\sqrt{x+1}=0\)
\(\Leftrightarrow2\left(x-2\right)^2-5\left(x-2\right)\sqrt{x+1}+2\left(x+1\right)=0\)
Đặt \(\left\{{}\begin{matrix}x-2=a\\\sqrt{x+1}=b\end{matrix}\right.\) ta được:
\(2a^2-5ab+2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\2a=b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+1}=x-2\left(x\ge2\right)\\\sqrt{x+1}=2x-4\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+4=x^2-4x+4\\x+1=4x^2-16x+16\end{matrix}\right.\) (\(x\ge2\))
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=3\end{matrix}\right.\) (đã loại nghiệm)
Giải phương trình
a) \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
b) \(\sqrt{x^2-4}-x^2+4=0\)
c) \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
d) \(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
a)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+x-3=0\)
Đặt \(x-3=t\) pt thành
\(\sqrt{t\left(t-6\right)}-t=0\)
\(\Leftrightarrow t^2-6t=t^2\)
\(\Leftrightarrow t=0\)\(\Rightarrow x-3=0\Leftrightarrow x=3\)
b)\(\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
Đặt \(\sqrt{x^2-4}=t\) pt thành
\(t=t^2\Rightarrow t\left(1-t\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}t=1\\t=0\end{array}\right.\).
Với \(t=0\Rightarrow\sqrt{x^2-4}=0\Rightarrow x=\pm2\)
Với \(t=1\Rightarrow\sqrt{x^2-4}=1\)\(\Rightarrow x=\pm\sqrt{5}\)
Giải phương trình:
a. \(\sqrt{x^2-4}-x^2+4=0\)
b. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
c. \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=1+\sqrt{3}\)
d. \(\sqrt{9x^2+6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.
b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)
Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)
Dấu = xảy ra khi \(x=2\)
c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)
\(\le1+\sqrt{3}\)
Dấu = không xảy ra nên pt vô nghiệm
Câu d làm tương tự
\(a,\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow x^2-4=\left(x-4\right)^2\)
\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)
\(\Leftrightarrow-x^4-7x^2-20=0\)
\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\)
\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\)
\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\)
\(\Rightarrow\)pt vô nghiệm
a/ĐK: \(x\ge2\)
\(PT\Leftrightarrow x^2-4=\sqrt{x^2-4}\)
Đặt \(x^2-4=t\Rightarrow x^2=t+4\)
Thay vào,phương trình đã cho tương đương với:
\(t=\sqrt{t}\Leftrightarrow t^2=t\Rightarrow\orbr{\begin{cases}t=1\\t=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2-4=1\\x^2-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=5\\x^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{5}\\x=2\end{cases}}\) (t/m)
Giải các phương trình
a,\(\sqrt{x^2-6x+9}=\sqrt{6-2\sqrt{5}}\)
b,\(\sqrt{9x^2-6x+1}-3\cdot\sqrt{\frac{7-4\sqrt{3}}{9}=0}\)
c,\(\sqrt{2x^2-4x+2}-\sqrt{3-\sqrt{5}}=0\)
a/ \(\sqrt{x^2-6x+9}=\sqrt{6-2\sqrt{5}}\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(\Leftrightarrow|x-3|=\sqrt{5}-1\)
Làm nốt
b/ \(\sqrt{9x^2-6x+1}-3\sqrt{\frac{7-4\sqrt{3}}{9}}=0\)
\(\Leftrightarrow\sqrt{\left(3x-1\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(\Leftrightarrow|3x-1|=2-\sqrt{3}\)
Làm nốt
c/ \(\sqrt{2x^2-4x+2}-\sqrt{3-\sqrt{5}}=0\)
\(\Leftrightarrow\sqrt{4x^2-8x+4}-\sqrt{6-2\sqrt{5}}=0\)
\(\Leftrightarrow\sqrt{\left(2x-2\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}=0\)
\(\Leftrightarrow|2x-2|=\sqrt{5}-1\)
Làm nốt
1, \(x^3-x-3=2\sqrt{6x-x^2}\)
2, \(x^3+6x^2-171x-40\left(x+1\right)\sqrt{5x-1}+20=0\)
3, \(\sqrt[3]{x+3}+\sqrt[3]{x-3}=\sqrt[5]{x-5}+\sqrt[5]{x+5}\)
4. \(\left(\frac{1}{\sqrt{x}}-\frac{\sqrt{x}}{x+1}\right)^2=\frac{4\left(1+\sqrt{1+4x}\right)}{x+1+\sqrt{x^2+3x+2}}\)
giải pt
a.\(2\sqrt{x-4}-\dfrac{1}{3}\sqrt{9x-36}=4-\sqrt{x-4}\)
b.\(3\sqrt{x-2}-\sqrt{x^2-4}=0\)
c.\(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=-5-x^2+6x\)
a,ĐK: x≥4
Ta có: \(2\sqrt{x-4}-\dfrac{1}{3}\sqrt{9x-36}=4-\sqrt{x-4}\)
\(\Leftrightarrow2\sqrt{x-4}-\sqrt{x-4}=4-\sqrt{x-4}\)
\(\Leftrightarrow2\sqrt{x-4}=4\)
\(\Leftrightarrow\sqrt{x-4}=2\Leftrightarrow x-4=4\Leftrightarrow x=8\left(tm\right)\)
b, ĐK: x≥2
Ta có: \(3\sqrt{x-2}-\sqrt{x^2-4}=0\)
\(\Leftrightarrow3\sqrt{x-2}-\sqrt{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(3-\sqrt{x+2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=0\\3-\sqrt{x+2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2=0\\\sqrt{x+2}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x+2=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=7\end{matrix}\right.\)