Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Huệ
Xem chi tiết
Komorebi
Xem chi tiết
Khôi Bùi
23 tháng 3 2019 lúc 21:15

2 ) Ta có : \(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2+1-ab\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\left(a^2+b^2+1\right)\left(\frac{a+b}{3}-1\right)-ab\left(\frac{a+b}{3}-1\right)\le0\)

\(\Leftrightarrow\left(a^2+b^2+1-ab\right)\left(\frac{a+b}{3}-1\right)\le0\)

Do a ; b dương \(\Rightarrow a^2+b^2+1-ab>0\Rightarrow\frac{a+b}{3}-1\le0\)

\(\Leftrightarrow a+b\le3\)

\(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=2a+\frac{8}{a}+\frac{2}{b}+2b-\left(a+b\right)\ge8+4-3=9\)

( áp dụng BĐT Cauchy cho a ; b dương )

Dấu " = " xảy ra \(\Leftrightarrow a=2;b=1\)

Nguyễn Việt Lâm
23 tháng 3 2019 lúc 21:27

Tìm min cho K, tìm max có lẽ Bunhia là ra thôi:

Đặt \(\left\{{}\begin{matrix}\sqrt{3a+1}=x\\\sqrt{3b+1}=y\\\sqrt{3x+1}=z\end{matrix}\right.\) \(\Rightarrow1\le x;y;z\le\sqrt{10}\)

\(x^2+y^2+z^2=3\left(a+b+c\right)+3=12\)

Bài toán trở thành cho \(x^2+y^2+z^2=12\), tìm min \(P=x+y+z\)

Ta có: \(\left(x-1\right)\left(x-\sqrt{10}\right)\le0\Rightarrow x^2-\left(\sqrt{10}+1\right)x+\sqrt{10}\le0\)

\(\left(y-1\right)\left(y-\sqrt{10}\right)=y^2-\left(\sqrt{10}+1\right)y+\sqrt{10}\le0\)

\(\left(z-1\right)\left(z-\sqrt{10}\right)=z^2-\left(\sqrt{10}+1\right)z+\sqrt{10}\le0\)

Cộng vế với vế:

\(x^2+y^2+z^2-\left(\sqrt{10}+1\right)\left(x+y+z\right)+3\sqrt{10}\le0\)

\(\Rightarrow x+y+z\ge\frac{x^2+y^2+z^2+3\sqrt{10}}{\sqrt{10}+1}=\frac{12+3\sqrt{10}}{\sqrt{10}+1}=2+\sqrt{10}\)

\(\Rightarrow P_{min}=2+\sqrt{10}\) khi \(\left(x;y;z\right)=\left(1;1;\sqrt{10}\right)\) và các hoán vị hay \(\left(a;b;c\right)=\left(3;0;0\right)\) và các hoán vị

 Mashiro Shiina
23 tháng 3 2019 lúc 20:58

haha

Nguyễn Thanh Hiền
Xem chi tiết
Khoa
Xem chi tiết
Tuấn Kiệt
Xem chi tiết
Tuấn Kiệt
30 tháng 11 2019 lúc 22:26

Nguyễn Việt Lâm anh làm bài này giúp em với ạ

Khách vãng lai đã xóa
Tuấn Kiệt
30 tháng 11 2019 lúc 22:27

Akai Haruma giúp em bài trên với ạ

Khách vãng lai đã xóa
Lan Trịnh Thị
3 tháng 12 2019 lúc 22:24

Akai Haruma cô giúp em với !!!

Khách vãng lai đã xóa
Nguyễn Tất Đạt
Xem chi tiết
Pain Thiên Đạo
26 tháng 5 2018 lúc 19:15

tích đi rồi ta làm

Pain Thiên Đạo
26 tháng 5 2018 lúc 19:48

tích đi bạn

Kiệt Nguyễn
Xem chi tiết
Tran Le Khanh Linh
30 tháng 4 2020 lúc 21:02

\(a^2b^2c^2+\left(a+1\right)\left(1+b\right)\left(1+c\right)\ge a+b+c+ab+bc+ca+3\)

\(\Leftrightarrow\left(abc\right)^2+abc-2\ge0\Leftrightarrow\left(abc+2\right)\left(abc-1\right)\ge0\Leftrightarrow abc\ge1\)

Áp dụng BĐT Cosi ta có:

\(\frac{a^3}{\left(b+2c\right)\left(2c+3a\right)}+\frac{b+2c}{45}+\frac{2c+3a}{75}\ge3\sqrt[3]{\frac{a^3}{\left(b+2c\right)\left(2c+3b\right)}\cdot\frac{b+2c}{45}\cdot\frac{2c+3a}{75}}=\frac{a}{5}\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(c+2a\right)\left(2a+3b\right)}+\frac{c+2a}{45}+\frac{2a+3b}{75}\ge\frac{b}{5}\left(2\right)\\\frac{c^3}{\left(a+2b\right)\left(2b+3c\right)}+\frac{a+2b}{45}+\frac{2b+3c}{75}\ge\frac{c}{5}\left(3\right)\end{cases}}\)

Từ (1)(2)(3) ta có:

\(P+\frac{2\left(a+b+c\right)}{15}\ge\frac{a+b+c}{5}\Leftrightarrow P\ge\frac{1}{15}\left(a+b+c\right)\)

Mà \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow S\ge\frac{1}{5}\)

Dấu "=" xảy ra <=> a=b=c=1

Khách vãng lai đã xóa
Kamado Tanjiro
3 tháng 5 2020 lúc 7:25

CHÚC BAN HỌC GIỎI

Khách vãng lai đã xóa
Phạm Bảo Nam
4 tháng 5 2020 lúc 16:20

đây\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

Khách vãng lai đã xóa
Tăng Quỳnh Chi
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 5 2019 lúc 16:10

\(P=\left(1+\frac{a}{3b}\right)\left(1+\frac{c}{3a}+\frac{b}{3c}+\frac{b}{9a}\right)\)

\(P=1+\frac{1}{3}\left(\frac{c}{a}+\frac{b}{c}+\frac{a}{b}\right)+\frac{1}{9}\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\frac{1}{27}\)

\(P\ge1+\frac{1}{27}+\frac{1}{3}.3\sqrt[3]{\frac{abc}{abc}}+\frac{1}{9}.3\sqrt[3]{\frac{abc}{abc}}=\frac{64}{27}\)

\(\Rightarrow P_{min}=\frac{64}{27}\) khi \(a=b=c\)

Dương Nhật Hoàng
Xem chi tiết