Bạn xem lại đề. Với từng này điều kiện thì không tìm được $M_{\min}$
Ta có \(2a^4+\left(a^4+1\right)\ge2a^4+2a^2\ge4a^3\)
\(\Rightarrow3a^4+1\ge4a^3\)
\(\Rightarrow M\ge\frac{4\left(a^3+b^3\right)+c^3}{\left(a+b+c\right)^3}\ge\frac{\left(a+b\right)^3+c^3}{\left(a+b+c\right)^3}\)\(=\left(1-\frac{c}{a+b+c}\right)^3+\frac{c^3}{\left(a+b+c\right)^3}\)
Đặt \(\frac{c}{a+b+c}=t\) (đề nhầm không ?)
\(\Rightarrow M\ge\left(1-t\right)^3+t^3\)