với a, b la các số dương . tìm gtnn vủa T=\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\)
Cho các số thực dương a,b,c thỏa mãn ab+bc+ca=5 . Tìm giá trị nhỏ nhất của
P=\(\frac{3a+3b+2c}{\sqrt{6\left(a^2+5\right)}+\sqrt{6\left(b^2+5\right)}+\sqrt{c^2+5}}\)
Cho các số thực dương a,b, c. Tìm GTNN của biểu thức
\(P=\frac{a}{\sqrt[3]{a}+\sqrt[3]{bc}}+\frac{b}{\sqrt[3]{b}+\sqrt[3]{ca}}+\frac{c}{\sqrt[3]{c}+\sqrt[3]{ab}}+\frac{9\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}{4\left(a+b+c\right)}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm GTNN của biểu thức
\(Q=\frac{\left(1-c\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}+\frac{\left(1-a\right)^2}{\sqrt{2\left(c+a\right)^2+ca}}+\frac{\left(1-b\right)^2}{\sqrt{2\left(a+b\right)^2+ab}}\)
a ) \(\sqrt{\frac{a^2}{b^2+\left(c+a\right)^2}}+\sqrt{\frac{b^2}{c^2+\left(a+b\right)^2}}+\sqrt{\frac{c^2}{a^2+\left(b+c\right)^2}}\le\frac{3}{\sqrt{5}}\)
với a,b,c là các số thực dương
b ) cho ba số thực dương a,b,c thỏa mãn abc=1. tìm GTNN của biểu thức
\(P=\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}+\frac{\left(1+b\right)^2+c^2+5}{bc+b+4}+\frac{\left(1+c\right)^2+a^2+5}{ca+c+4}\)
Cho số thực a, b không âm thỏa mãn a2+b2≤2
Tìm giá trị lớn nhất của biểu thức: C=\(\sqrt{a\left(29a+3b\right)}+\sqrt{b\left(29b+3a\right)}\)
Cho các số thực dương a, b, c thỏa mãn ab+bc+ca=11. Tìm GTNN của P=\(\frac{5a+5b+2c}{\sqrt{12\left(a^2+11\right)}+\sqrt{12\left(b^2+11\right)}+\sqrt{c^2+11}}\)
Cho các số thực dương a,b; \(a\ne b\) . CMR
\(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}=0\)
Cho a,b,c là các số thực không âm. CMR :
\(4\left(\sqrt{a^3b^3}+\sqrt{b^3c^3}+\sqrt{c^3a^3}\right)\le4c^3+\left(a+b\right)^3\)