Cho a , b là hai số thực dương thỏa mãn log 5 4 a + 2 b + 5 a + b = a + 3 b - 4 . Tìm giá trị nhỏ nhất của biểu thức T = a 2 + b 2
A. 1 2
B. 1.
C. 3 2
D. 5 2
Cho a;b là hai số thực dương thỏa mãn log 5 4 a + 2 b + 5 a + b = a + 3 b − 4 . Tìm giá trị nhỏ nhất của biểu thức T = a 2 + b 2
A. 1/2
B. 5/2
C. 3/2
D. 1
Cho a, b, c là các số thực dương khác 1 thỏa log a 2 b + log b 2 c = log a c b - 2 log b c b - 3
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P = log a b - log b c Giá trị của biểu thức S = 2 m + 3 M bằng
A. S = 1 3
B. S = 2 3
C. S = 2
D. S = 3
Cho a, b, c là các số thực dương khác 1 thỏa log a 2 b + log b 2 c = log a c d - 2 log b c b - 3 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P = log a b - log b c . Giá trị của biểu thức S =2m+3M bằng
A. S=1/3.
B. S =2/3.
C. S =2.
D. S =3.
Cho các số thực dương a,b,c thỏa mãn f a b + b c + c a + 3 + f 2 - 2 a 2 - 2 b 2 - 2 c 2 = 1 với hàm số f x = 4 x 4 x + 4 Giá trị lớn nhất của biểu thức P = a 2 + b 2 + c 2 - 1 a + b + c + 3 bằng
A. 17 6
B. 3
C. 13 6
D. 13 4
Cho hai số thực a, b thỏa mãn điều kiện 3 a − 4 > b > 0 và biểu thức P = log a a 3 4 b + 3 16 log 3 a 4 + b a 2 có giá trị nhỏ nhất. Tính tổng S=3a+b
A. S = 8
B. S = 13 2
C. S = 25 2
D. S = 14
Cho hàm số y=f(x) có đạo hàm y ' = x 2 - 12 x + 1 4 ( b + 3 a ) ∀ x ∈ R , biết hàm số luôn có hai cực với a, b là các số thực không âm thỏa mãn 3 b - a ≤ 6 . Tìm giá trị lớn nhất của biểu thức P = 2a+b
A. 1
B. 9
C. 8
D. 6
Cho hai số thực dương a, b thỏa mãn 9 a 3 + a b + 1 = 3 b + 2 . Giá trị lớn nhất của biểu thức S = 6a - b là
A. 17 12
B. 82 3
C. 11 3
D. 89 12
Gọi a, b, c là ba số thực khác 0 thay đổi và thỏa mãn điều kiện 3 a = 5 b = 15 - c . Tìm giá trị nhỏ nhất của biểu thức P = a 2 + b 2 + c 2 - 4 a + b + c
A. - 3 - log 5 3
B. -4
C. - 2 - 3
D. - 2 - log 5 3