Tìm Max của: \(5-2sin^2x\)
Tìm Min, Max:
\(y=2Sin^2x+3SinxCosx+Cos^2x\)
\(y=2sin^2x+3sinx.cosx+cos^2x\)
\(=-\left(1-2sin^2x\right)+\dfrac{3}{2}sin2x+\dfrac{1}{2}\left(2cos^2x-1\right)+\dfrac{1}{2}\)
\(=-cos2x+\dfrac{3}{2}sin2x+\dfrac{1}{2}cos2x+\dfrac{1}{2}\)
\(=\dfrac{3}{2}sin2x-\dfrac{1}{2}cos2x+\dfrac{1}{2}\)
\(=\dfrac{\sqrt{10}}{2}\left(\dfrac{3}{\sqrt{10}}sin2x-\dfrac{1}{\sqrt{10}}cos2x\right)+\dfrac{1}{2}\)
\(=\dfrac{\sqrt{10}}{2}sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)+\dfrac{1}{2}\)
Vì \(sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)\in\left[-1;1\right]\)
\(\Rightarrow y=\dfrac{\sqrt{10}}{2}sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)+\dfrac{1}{2}\in\left[-\dfrac{\sqrt{10}}{2}+\dfrac{1}{2};\dfrac{\sqrt{10}}{2}+\dfrac{1}{2}\right]\)
\(\Rightarrow y_{min}=-\dfrac{\sqrt{10}}{2}+\dfrac{1}{2}\Leftrightarrow sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)=-1\Leftrightarrow...\)
\(y_{max}=\dfrac{\sqrt{10}}{2}+\dfrac{1}{2}\Leftrightarrow sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)=1\Leftrightarrow...\)
1. Tìm Min, Max của :
B = cos 2x + \(\sqrt{1+2sin^2x}\)
Lời giải:
Ta có:
\(B=\cos 2x+\sqrt{1+2\sin ^2x}=\cos ^2x-\sin ^2x+\sqrt{1+2\sin ^2x}\)
\(=1-2\sin ^2x+\sqrt{1+2\sin ^2x}\)
Đặt \(\sin ^2x=t(t\in [0;1])\). Khi đó:
\(B=1-2t+\sqrt{1+2t}\)
\(B'=\frac{1}{\sqrt{1+2t}}-2=0\Leftrightarrow t=-\frac{3}{8}\) (loại)
Lập bảng biến thiên suy ra:
\(B_{\max}=B(0)=2\)
\(B_{\min}=B(1)=\sqrt{3}-1\)
Tìm max-min của hs y=4sin²x+√2sin(2x+pi/4)
Tìm Min,Max của các hàm số
a/ y= 2sin bình x+ cos bình 2x+2
b/ y=4sin2x + 5cos2x -2
c/ y= 3sin(2x-(pi/3))-2cos(2x-(pi/3))+1
d/ y=(2sin bình 3x+4sin3x.cos3x+1)/(sin6x+4cos6x+10)
Giusp mình với ạ!!! Thực sự mình rất cầN!!! Mình cảm ơn!
Tìm chu kì của hàm số:
\(y=sin^3x-2sin^2x\)
\(y=\dfrac{3}{4}sinx-\dfrac{1}{4}sin3x+cos2x-1\)
Hàm \(\dfrac{3}{4}sinx\) có chu kì \(T_1=2\pi\)
Hàm \(\dfrac{1}{4}sin3x\) có chu kì \(T_2=\dfrac{2\pi}{3}\)
Hàm \(cos2x\) có chu kì \(T_3=\dfrac{2\pi}{2}=\pi\)
\(\Rightarrow y\) có chu kì \(T=BCNN\left(2\pi;\dfrac{2\pi}{3};\pi\right)=2\pi\)
Tìm GTLN, GTNN của hàm số: y = 2sin^2x + 4sinxcosx + 6
\(y=1-cos2x+2sin2x+6=2sin2x-cos2x+7\)
\(y=\sqrt{5}\left(\dfrac{2}{\sqrt{5}}sin2x-\dfrac{1}{\sqrt{5}}cos2x\right)+7\)
Đặt \(\dfrac{2}{\sqrt{5}}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\)
\(y=\sqrt{5}sin\left(2x-a\right)+7\)
\(\Rightarrow-\sqrt{5}+7\le y\le\sqrt{5}+7\)
Cho 2sinx . siny - 3cosx . cosy = 0
CMR \(\dfrac{1}{2sin^2x+3cos^2x}+\dfrac{1}{2sin^2y+3cos^2y}=\dfrac{5}{6}\)
Tìm min, max
a) \(y=\sqrt{7-3cos^2x}\)
b) \(y=\frac{2}{1+tan^2x}\)
c) \(y=2sin^2x+\sqrt{3}sin2x\)
a/ \(0\le cos^2x\le1\Rightarrow2\le y\le\sqrt{7}\)
\(y_{min}=2\) khi \(cos^2x=1\)
\(y_{max}=\sqrt{7}\) khi \(cos^2x=0\)
b/ \(y=\frac{2}{1+tan^2x}=\frac{2}{\frac{1}{cos^2x}}=2cos^2x\le2\)
\(\Rightarrow y_{max}=2\) khi \(cos^2x=1\)
\(y_{min}\) ko tồn tại
c/ \(y=1-cos2x+\sqrt{3}sin2x=2\left(\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x\right)+1\)
\(y=2sin\left(2x-\frac{\pi}{6}\right)+1\)
Do \(-1\le sin\left(2x-\frac{\pi}{6}\right)\le1\Rightarrow-1\le y\le3\)
tìm max của B=-2x^2-3x+5
\(B=-2\left(x^2-\dfrac{3}{2}x\right)+5=-2\left(x^2-2x.\dfrac{3}{4}+\dfrac{9}{16}\right)+5+\dfrac{9}{16}=-2\left(x-\dfrac{3}{4}\right)^2+\dfrac{25}{16}\le\dfrac{25}{16}\)
dấu = xảy ra khi x=3/4
vậy Bmax=....
tik mik nha
B=-2x2-3x+5
=-2(x2-\(\dfrac{3}{2}\)x)+5
=-2(x2-2.\(\dfrac{3}{4}\)x+\(\dfrac{9}{16}\))+\(\dfrac{71}{16}\)
=-2(x-\(\dfrac{3}{4}\))2+\(\dfrac{71}{16}\)≤\(\dfrac{71}{16}\)
Dấu "=" xảy ra⇔x-\(\dfrac{3}{4}\)=0⇔x=\(\dfrac{3}{4}\)
MaxB=\(\dfrac{71}{16}\)⇔×=\(\dfrac{3}{4}\)
Ta có: \(B=-2x^2-3x+5\)
\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)
\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)