Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn xuân tùng
Xem chi tiết
Nguyễn Văn Hóa
Xem chi tiết
Tô Mì
6 tháng 6 2023 lúc 9:58

(a) Điều kiện : \(x\ne-1.\)

Ta có : \(P=\dfrac{x^4+x}{x^2-x+1}+1-\dfrac{2x^2+3x+1}{x+1}\)

\(=\dfrac{x\left(x^3+1\right)}{x^2-x+1}+1-\dfrac{\left(2x+1\right)\left(x+1\right)}{x+1}\)

\(=\dfrac{x\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}+1-\left(2x+1\right)\)

\(=x\left(x+1\right)+1-2x-1\)

\(=x^2-x.\)

Vậy : Với mọi \(x\ne-1\) thì \(P=x^2-x.\)

 

(b) Ta có : \(P=x^2-x\)

\(=\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\left(\dfrac{1}{2}\right)^2\)

\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Vậy : \(MinP=-\dfrac{1}{4}.\) Dấu đẳng thức xảy ra khi và chỉ khi \(x=\dfrac{1}{2}.\)

Cáo trắng
Xem chi tiết
Akai Haruma
27 tháng 2 2023 lúc 18:27

Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn. Viết thế này khó đọc quá trời.

Rhider
Xem chi tiết
Akai Haruma
19 tháng 12 2021 lúc 20:35

Lời giải:
$A=x^2+2x+2xy+2y^2+4y+2021$

$=(x^2+2xy+y^2)+2x+y^2+4y+2021$

$=(x+y)^2+2(x+y)+1+(y^2+2y+1)+2019$

$=(x+y+1)^2+(y+1)^2+2019\geq 2019$

Vậy $A_{\min}=2019$ khi $x+y+1=y+1=0$

$\Leftrightarrow (x,y)=(0,-1)$

Phương Linh
Xem chi tiết
Tạ Duy Phương
20 tháng 10 2015 lúc 22:30

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

Nguyễn Đăng Tài
Xem chi tiết
Lil Shroud
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 2 2021 lúc 18:48

\(P=x^2-3x+\dfrac{1}{2x}+\dfrac{7}{4}+\dfrac{1}{4}\)

\(P=\dfrac{4x^3-12x^2+7x+2}{4x}+\dfrac{1}{4}=\dfrac{\left(x-2\right)\left(4x^2-4x-1\right)}{4x}+\dfrac{1}{4}\)

\(P=\dfrac{\left(x-2\right)\left[4x\left(x-2\right)+\dfrac{1}{2}\left(x-2\right)+\dfrac{7x}{2}\right]}{4x}+\dfrac{1}{4}\ge\dfrac{1}{4}\)

\(P_{min}=\dfrac{1}{4}\) khi \(x=2\)

SC__@
24 tháng 2 2021 lúc 18:51

\(P=x^2-3x+\dfrac{1}{2x}+2\)

\(P=x^2-4x+4+x+\dfrac{4}{x}-\dfrac{7}{2x}-2\)

\(P=\left(x-2\right)^2+x+\dfrac{4}{x}-\dfrac{7}{2x}-2\)

Áp dụng bđt cosi và bđt x \(\ge\)2

Ta có: P \(\ge0+2\sqrt{x\cdot\dfrac{4}{x}}-\dfrac{7}{2.2}-2=\dfrac{1}{4}\)

Dấu "=" xảy ra <=> x = 2

Vậy MinP = 1/4 <=> x = 2

Ngọc tấn đoàn
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 12 2021 lúc 21:55

a.

\(A=\left(x^4+y^2+1-2x^2y+2x^2-2y\right)+2\left(y^2-2y+1\right)+2026\)

\(A=\left(x^2-y+1\right)^2+2\left(y-1\right)^2+2026\ge2026\)

\(A_{min}=2026\) khi \(\left(x;y\right)=\left(0;1\right)\)

b.

Đặt \(x-1=t\Rightarrow x=t+1\)

\(\Rightarrow A=\dfrac{3\left(t+1\right)^2-8\left(t+1\right)+6}{t^2}=\dfrac{3t^2-2t+1}{t^2}=\dfrac{1}{t^2}-\dfrac{2}{t}+3=\left(\dfrac{1}{t}-1\right)^2+2\ge2\)

\(A_{min}=2\) khi \(t=1\Rightarrow x=2\)

Nguyễn Hoàng Minh
30 tháng 12 2021 lúc 21:59

\(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=\dfrac{3x^2-8x+6}{\left(x-1\right)^2}=\dfrac{2\left(x-1\right)^2+\left(x-2\right)^2}{\left(x-1\right)^2}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)

Dấu \("="\Leftrightarrow x=2\)

Nguyễn Ngọc Anh
Xem chi tiết
Lấp La Lấp Lánh
18 tháng 9 2021 lúc 22:58

\(B=x\left(2x-1\right)=2x^2-x=2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{1}{8}=2\left(x-\dfrac{1}{4}\right)^2-\dfrac{1}{8}\ge-\dfrac{1}{8}\)

\(minB=-\dfrac{1}{8}\Leftrightarrow x=\dfrac{1}{4}\)

\(C=x\left(3x+4\right)=3x^2+4x=3\left(x^2+\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{4}{3}=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)

\(minC=-\dfrac{4}{3}\Leftrightarrow x=-\dfrac{2}{3}\)

Yeutoanhoc
18 tháng 9 2021 lúc 22:58

`B=x(2x-1)`

`=2x(x-1/2)`

`=2(x^2-1/2x)`

`=2(x^2-1/2x+1/16)-1/8`

`=2(x-1/4)^2-1/8>=-1/8`

Dấu "=" xảy ra khi `x=1/4`

`C=x(3x+4)`

`=3x(x+4/3)`

`=3(x^2+4/3x)`

`=3(x^2+4/3x+4/9)-4/3`

`=3(x+2/3)^2-4/3>=-4/3`

Dấu "=" xảy ra khi `x=-2/3`