\(P=x^2-3x+\dfrac{1}{2x}+\dfrac{7}{4}+\dfrac{1}{4}\)
\(P=\dfrac{4x^3-12x^2+7x+2}{4x}+\dfrac{1}{4}=\dfrac{\left(x-2\right)\left(4x^2-4x-1\right)}{4x}+\dfrac{1}{4}\)
\(P=\dfrac{\left(x-2\right)\left[4x\left(x-2\right)+\dfrac{1}{2}\left(x-2\right)+\dfrac{7x}{2}\right]}{4x}+\dfrac{1}{4}\ge\dfrac{1}{4}\)
\(P_{min}=\dfrac{1}{4}\) khi \(x=2\)
\(P=x^2-3x+\dfrac{1}{2x}+2\)
\(P=x^2-4x+4+x+\dfrac{4}{x}-\dfrac{7}{2x}-2\)
\(P=\left(x-2\right)^2+x+\dfrac{4}{x}-\dfrac{7}{2x}-2\)
Áp dụng bđt cosi và bđt x \(\ge\)2
Ta có: P \(\ge0+2\sqrt{x\cdot\dfrac{4}{x}}-\dfrac{7}{2.2}-2=\dfrac{1}{4}\)
Dấu "=" xảy ra <=> x = 2
Vậy MinP = 1/4 <=> x = 2