1. Cho 3 số dương x, y, z thỏa mãn x+y+z=1. TÌM GTNN của biểu thức: A=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
2. Cho a, b,c>0 và a+b+c=3. Tìm GTNN của biểu thức S=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).
3. CHo x,y,z là 3 số thực dương thỏa mãn đk: x+y+z≤ 6.
CM: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) ≥ \(\frac{3}{2}\).
4. Cho 4 số dương a, b,c, d . CMR \(a^4+b^4+c^4+d^4\) ≥ 4abcd.
Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)(x+y+z)\geq (1+1+1)^2\)
\(\Leftrightarrow A.1\geq 9\Leftrightarrow A\geq 9\)
Vậy GTNN của $A$ là $9$. Giá trị này đạt được tại $x=y=z=\frac{1}{3}$
Bài 2:
Hoàn toàn tương tự bài 1
$S(a+b+c)\geq (1+1+1)^2$ theo BĐT Bunhiacopxky
$\Leftrightarrow S.3\geq 9\Rightarrow S\geq 3$
Vậy GTNN của $S$ là $3$ khi $a=b=c=1$
Bài 3:
Áp dụng BĐT Bunhiacopxky như các bài trên ta có:
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$
Mà $0< x+y+z\leq 6$ nên $\frac{9}{x+y+z}\geq \frac{9}{6}=\frac{3}{2}$
Do đó $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}$ (đpcm)
Dấu "=" xảy ra khi $x=y=z=2$
Bài 4:
Áp dụng BĐT Cô-si cho các số dương ta có:
$a^4+b^4+c^4+d^4\geq 4\sqrt[4]{a^4b^4c^4d^4}=4abcd$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=d>0$