\(P=\frac{\frac{1}{16}}{x}+\frac{\frac{1}{4}}{y}+\frac{1}{z}=\frac{\left(\frac{1}{4}\right)^2}{x}+\frac{\left(\frac{1}{2}\right)^2}{y}+\frac{1^2}{z}\ge\frac{\left(\frac{1}{4}+\frac{1}{2}+1\right)^2}{x+y+z}=\frac{49}{16}\)
\(\Rightarrow P_{min}=\frac{49}{16}\) khi \(\left\{{}\begin{matrix}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{matrix}\right.\)