Violympic toán 8

MInemy Nguyễn

1.a, cho a,b,c và x,y,z là các số khác 0, thỏa mãn đk a+b+c=0, x+y+z=0,\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\). chứng minh rằng:

\(a^2x+b^2y+c^2z=0\)

b, cho a,b,c là các hằng số và a,b,c≠-1. chứng minh rằng nếu x=by+cz, y=ax+cz, z=ax+by, x+y+z≠0 thì\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)

2. giả sử \(a_1,b_1,c_1,a_2,b_2,c_2\) là các số khác 0 thỏa mãn các đk: \(\frac{a_1}{a_2}+\frac{b_1}{b_2}+\frac{c_1}{c_2}=0\)\(\frac{a_2}{a_1}+\frac{b_2}{b_1}+\frac{c_2}{c_1}=1\)

cmr \(\frac{a\frac{2}{2}}{a\frac{2}{1}}+\frac{b\frac{2}{2}}{b\frac{2}{1}}+\frac{c\frac{2}{2}}{c\frac{2}{1}}=1\)

3. a, biết x,y,z khác 0 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\). tính gt bt

M=\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)

b, biết x,y,z khác 0 và x+y+z=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\). cmr

y(\(x^2-yz\))\(\left(1-xz\right)=x\left(1-yz\right)\left(y^2-xz\right)\)

4. cho x,y,z khác 0 và \(\frac{y^2+z^2-x^2}{2yz}+\frac{z^2+x^2-y^2}{2xz}+\frac{x^2+y^2-z^2}{2xy}=1\)

chứng minh rằng trong 3 phân thức đã cho có 1 phân thức bằng -1 và hai phân thức còn lại đều bằng 1

Akai Haruma
20 tháng 3 2020 lúc 22:43

Bài 1:

a) Từ đkđb:

$x+y+z=0\Rightarrow x+y=-z; y+z=-x; z+x=-y$

$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\Rightarrow xbc+yac+zab=0$

$a+b+c=0\Rightarrow a=-(b+c)\Rightarrow a^2=(b+c)^2$

$\Rightarrow a^2x=(b+c)^2x$.

Tương tự: $b^2y=(a+c)^2y; c^2z=(a+b)^2z$

Do đó:

$a^2x+b^2y+c^2z=(b+c)^2x+(a+c)^2y+(a+b)^2z=a^2(y+z)+b^2(z+x)+c^2(x+y)+2(xbc+yac+zab)$

$=a^2(-x)+b^2(-y)+c^2(-z)+2.0=-(a^2x+b^2y+c^2z)$

$\Rightarrow 2(a^2x+b^2y+c^2z=0$

$\Rightarrow a^2x+b^2y+c^2z=0$ (đpcm)

b)

\(\left\{\begin{matrix} x=by+cz\\ y=ax+cz\\ z=ax+by\end{matrix}\right.\Rightarrow \frac{x+y+z}{2}=ax+by+cz\)

\(\Rightarrow \left\{\begin{matrix} ax=\frac{x+y+z}{2}-x=\frac{y+z-x}{2}\\ by=\frac{x+y+z}{2}-y=\frac{x+z-y}{2}\\ cz=\frac{x+y+z}{2}-z=\frac{x+y-z}{2}\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} a=\frac{y+z-x}{2x}\\ b=\frac{x+z-y}{2y}\\ c=\frac{x+y-z}{2z}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a+1=\frac{y+z+x}{2x}\\ b+1=\frac{x+z+y}{2y}\\ c+1=\frac{x+y+z}{2z}\end{matrix}\right.\)

\(\Rightarrow \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=2\) (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
Akai Haruma
20 tháng 3 2020 lúc 22:48

Bài 2:
Đặt $\frac{a_2}{a_1}=x; \frac{b_2}{b_1}=y; \frac{c_2}{c_1}=z$

Khi đó bài toán trở thành: Cho $x,y,z\neq 0$ thỏa mãn \(\left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\\ x+y+z=1\end{matrix}\right.\)

CMR: $x^2+y^2+z^2=1$

-----------------------------------

Thật vậy:

Ta có: \(\left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\\ x+y+z=1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} xy+yz+xz=0\\ x+y+z=1\end{matrix}\right.\)

Khi đó: $x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=1^2-2.0=1$ (đpcm)

Vậy........

Bình luận (0)
 Khách vãng lai đã xóa
Akai Haruma
20 tháng 3 2020 lúc 22:51

Bài 3:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow xy+yz+xz=0\)

\(\Rightarrow yz+xz=-xy\)

Khi đó:

\(M=\frac{(yz)^3+(xz)^3+(xy)^3}{x^2y^2z^2}=\frac{(yz+xz)^3-3yz.xz(yz+xz)+(xy)^3}{x^2y^2z^2}\)

\(=\frac{(-xy)^3-3yz.xz(-xy)+(xy)^3}{x^2y^2z^2}=\frac{3x^2y^2z^2}{x^2y^2z^2}=3\)

Bình luận (0)
 Khách vãng lai đã xóa
Akai Haruma
20 tháng 3 2020 lúc 23:26

Bài 4:

ĐKĐB \(\Leftrightarrow (\frac{y^2+z^2-x^2}{2yz}+1)+(\frac{z^2+x^2-y^2}{2xz}-1)+(\frac{x^2+y^2-z^2}{2xy}-1)=0\)

\(\Leftrightarrow \frac{(y+z)^2-x^2}{2yz}+\frac{(z-x)^2-y^2}{2xz}+\frac{(x-y)^2-z^2}{2xy}=0\)

\(\Leftrightarrow \frac{(y+z-x)(y+z+x)}{2yz}+\frac{(z-x-y)(z-x+y)}{2xz}+\frac{(x-y-z)(x-y+z)}{2xy}=0(*)\)

Đặt \(\left\{\begin{matrix} y+z-x=a\\ x+z-y=b\\ x+y-z=c\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x+y+z=a+b+c\\ z=\frac{a+b}{2}\\ x=\frac{b+c}{2}\\ y=\frac{a+c}{2}\end{matrix}\right.\)

Khi đó:

\((*)\Leftrightarrow \frac{2a(a+b+c)}{(a+b)(a+c)}+\frac{-2ac}{(a+b)(b+c)}+\frac{-2ab}{(b+c)(a+c)}=0\)

\(\Rightarrow 2a(a+b+c)(b+c)-2ac(a+c)-ab(a+b)=0\)

\(\Rightarrow abc=0\)

Nếu $a=0$ thì: \(\left\{\begin{matrix} \frac{y^2+z^2-x^2}{2yz}+1=\frac{2a(a+b+c)}{(a+b)(a+c)}=0\\ \frac{z^2+x^2-y^2}{2xz}-1=\frac{-2ac}{(a+b)(b+c)}=0\\ \frac{x^2+y^2-z^2}{2xy}-1=\frac{-2ab}{(b+c)(a+c)}=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{y^2+z^2-x^2}{2yz}=-1\\ \frac{z^2+x^2-y^2}{2xz}=1\\ \frac{x^2+y^2-z^2}{2xy}=1\end{matrix}\right.\) (đpcm)

Tương tự với $b=0; c=0$

Bình luận (0)
 Khách vãng lai đã xóa
Akai Haruma
16 tháng 3 2020 lúc 14:52

Bài 1:

a) Từ đkđb:

$x+y+z=0\Rightarrow x+y=-z; y+z=-x; z+x=-y$

$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\Rightarrow xbc+yac+zab=0$

$a+b+c=0\Rightarrow a=-(b+c)\Rightarrow a^2=(b+c)^2$

$\Rightarrow a^2x=(b+c)^2x$.

Tương tự: $b^2y=(a+c)^2y; c^2z=(a+b)^2z$

Do đó:

$a^2x+b^2y+c^2z=(b+c)^2x+(a+c)^2y+(a+b)^2z=a^2(y+z)+b^2(z+x)+c^2(x+y)+2(xbc+yac+zab)$

$=a^2(-x)+b^2(-y)+c^2(-z)+2.0=-(a^2x+b^2y+c^2z)$

$\Rightarrow 2(a^2x+b^2y+c^2z=0$

$\Rightarrow a^2x+b^2y+c^2z=0$ (đpcm)

b)

\(\left\{\begin{matrix} x=by+cz\\ y=ax+cz\\ z=ax+by\end{matrix}\right.\Rightarrow \frac{x+y+z}{2}=ax+by+cz\)

\(\Rightarrow \left\{\begin{matrix} ax=\frac{x+y+z}{2}-x=\frac{y+z-x}{2}\\ by=\frac{x+y+z}{2}-y=\frac{x+z-y}{2}\\ cz=\frac{x+y+z}{2}-z=\frac{x+y-z}{2}\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} a=\frac{y+z-x}{2x}\\ b=\frac{x+z-y}{2y}\\ c=\frac{x+y-z}{2z}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a+1=\frac{y+z+x}{2x}\\ b+1=\frac{x+z+y}{2y}\\ c+1=\frac{x+y+z}{2z}\end{matrix}\right.\)

\(\Rightarrow \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=2\) (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
Trần Bảo Hân
Xem chi tiết
Matsumi
Xem chi tiết
MInemy Nguyễn
Xem chi tiết
Lê Trường Lân
Xem chi tiết
Online Math
Xem chi tiết
Trí Phạm
Xem chi tiết
duy khang nguyễn
Xem chi tiết
Trung Vũ
Xem chi tiết
Lunox Butterfly Seraphim
Xem chi tiết