Bài 1. Tìm các số nguyên m sao cho \(A=\frac{3n-13}{n-1}\) có giá trị nguyên.
Bài 2. Cho a, b, c thỏa mãn: ab + bc + ac = 0
Tính \(P=\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ca}{b^2}\)
Bài 3. Tìm a, b sao cho:
(x4 - 9x3 + 21x2 + ax + b) \(⋮\) x2 - x - 2
Bài 4. Tìm các cặp sô nguyên (x;y) thỏa mãn:
x2 + 2y2 + 2xy - 4y - 1 = 0
Bài 1. Tìm x, y thỏa mãn: x2 - y2 - 2x - 4y + 5 = 0
Bài 2. Cho a, b, c thỏa mãn a( a - b ) + b( b - c ) + c( c - a ) = 0
Tìm GTNN của P = a3 + b3 + c3 - 3abc + 3ab - 3c + 5
Bài 3. Tìm x, y, z thỏa mãn: x2 + 4y2 + z2 = 2x + 12y - 4z - 14
Bài 4. Cho x2 + x - 3 = 0. Tính P = \(x^2+\frac{9}{x^2}\)
Bài 5. Cho x2 + y2 + z2 = xy + yz + zx và x + y + z = -3
Tính A = x2017 + y2018 + z2019
Bài 6. Cho x, y, z thỏa mãn: x + y + z = x2 + y2 + z2 = x3 + y3 + z3 = 1
Tính P = ( x - 1 )18 + ( y - 1 )9 + ( z - 1 )1997
Bài 7. Cho a, b thỏa mãn 4a2 + 2b2 + 4ab - 4a - 6b + 1 = 0
Tìm GTNN của P = 2a + b
Bài 8. Tìm GTNN của:
a) P = x2 + 3y2 - 2xy + 2x - 4y + 5
b) Q = x4 - x2 + 2x + 1999
Bài 9. Tìm GTLN của x thỏa mãn: x2 + 4y2 - 4y = 15
1.Vì sao nói khí hậu châu Á phân hóa rất đa dạng? Chứng minh khí hậu châu Á phân bố theo kiểu khí hậu gió mùa và kiểu khí hậu lục địa.
2. Cho biết vị trí địa lí và khí hậu ảnh hưởng như thế nào đến đặc điểm sông ngòi châu Á.
3. Dân cư châu Á có những đặc điểm gì nổi bật? Trình bày đặc điểm ra đời và đặc điểm nổi bật của 4 tôn giáo lớn ở châu Á.
4. Dựa vào hình 6.1(SGK) hãy nhận xét sự phân bố dân cư ở châu Á? Giải thích tại sao có sự phân bố dân cư như vậy.
Bài 1. Cho x > 0 và x2 + \(\frac{1}{x^2}\) = 7. Tính \(x^5+\frac{1}{x^5}\)
Bài 2. Cho x2 + y2 + z2 = xy + yz + zx và x2016 + y2016 + z2016 = 32017
Bài 3. Cho a, b, c khác nhau thỏa mãn: a2(b + c) = b2(c + a) = 2019. Tính c2(a + b)
Bài 4. Tìm x, y nguyên dương thỏa mãn: 3xy + x + 15y - 2 = 0
1. Tìm số nguyên n sao cho phân thức \(\frac{n+2}{n^2+4}\) có giá trị là số nguyên
2. Cho x + y + z = xy + yz + zx = 0
Tính giá trị của biểu thức B = x100 + y101 + z102
3. Cho các số a, b, c thỏa mãn: a(a - b) + b(b - c) + c(c - a) = 0
Tìm GTNN của biểu thức N = a3 + b3 + c3 - 3abc + 3ab - 3c +5
4. Tìm các số nguyên x, y, z thỏa mãn x - y - z = -3 và x2 - y2 - z2 = 1
5. Cho ba số a, b, c thỏa mãn a2(b - c) + b2(c - a) + c2(a - b) = 0. CMR trong ba số a, b, c có ít nhất hai số bằng nhau
6. Cho ba số a, b, c khác 0 thỏa mãn đẳng thức \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
7. Cho a + b = S và ab = P. Hãy biểu diễn theo S và P, các biểu thức sau đây:
a) A = a2 + b2
b) B = a3 + b3
c) C = a4 + b4
8. CMR:
a) a2 ( a + 1) + 2a ( a + 1) chia hết cho 6 với a thuộc Z
b) x2 + 2x + 2 > 0 với x thuộc Z
c) -x2 + 4x - 5 < 0 với x thuộc Z
9. Tìm GTLN của E = -x2 + 2xy - 4y2 + 2x + 10y - 3
10. Tìm các số nguyên x, y thỏa mãn 10x2 + 20y2 + 24xy + 8x -24y + 51 \(\le\) 0
11. Tìm giá trị nguyên của x, y trong đẳng thức: 2x3 + xy = 7
12. Tìm GTNN của biểu thức P =x4 + 2x3 + 3x2 + 2x + 1
1. Tìm các số x, y, z thỏa mãn x2 + 4y2 + 9z2 + 2x - 4y + 12z + 6 = 0
2. Cho 3 số a, b, c khác 0 thỏa mãn đẳng thức:
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
3. Tìm giá trị nhỏ nhất của biểu thức: M = 5x2 + 2y2 + 4xy - 2x + 4y + 2005
4. Tìm x, y, z thỏa mãn đẳng thức: x2 + 4y2 + z2 = 2x + 12y - 4z - 14
5. Tìm giá trị nhỏ nhất của biểu thức:
a) A = (x-1)(x+2)(x+3)(x+6)
b) B = x2 - 2x + y2 + 4y + 8
c) C = x2 - 4x + y2 - 8y + 6
d) D = x2 - 4xy + 5y2 + 10x - 22y + 28
6. Cho a + b = S và ab = P. Hãy biểu diễn theo S và P, các biểu thức sau đây:
a) A = a2 + b2
b) B = a3 + b3
c) C = a4 + b4
7. Chứng minh rằng:
a) a2 ( a + 1) + 2a ( a + 1 ) chia hết cho 6 với a thuộc Z
b) a ( 2a - 3 ) - 2a ( a + 1 ) chia hết cho 5 với mọi a thuộc Z
c) x2 + 2x + 2 > 0 với x thuộc Z
d) -x2 + 4x - 5 < 0 với x thuộc Z
8. Cho x2 + 2y + 1 = 0; y2 + 2z + 1 = 0 và z2 + 2x + 1 = 0
Tính A = x2000 + y2000 + z2000
9. Tìm GTNN của các biểu thức sau:
a) A = x2 + 2y2 - 2xy + 2x - 10y
b) B = x2 + 6y2 + 14z2 - 8yz + 6zx - 4xy
c) C = x2 - 2xy + 6y2 - 12x + 2y + 45
d) D = x2 - 2xy + 3y2 - 2x - 10y + 20
10. Tìm GTLN của E = -x2 + 2xy - 4y2 + 2x + 10y - 3
11. Tìm các số nguyên x, y, z thỏa mãn 10x2 + 20y2 + 24xy + 8x -24y + 51 \(\le\) 0
12. Cho 3 số x, y, z thỏa mãn điều kiện x + y + z = 0 và xy + yz + xz = 0
Hãy tính giá trị của biểu thức: S = ( x - 1 )1995 + y1996 + ( z + 1 )1997
13. Chứng minh rằng: Với mọi x thuộc Q thì giá trị của đa thức:
M = ( x + 2 )( x + 4 )( x + 6)( x + 8) + 16 là bình phương của 1 số hữu tỉ.
14. Cho x + y + z = 0, với x, y, z khác 0
Tính giá trị của biểu thức: K = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
15. Tìm Min, Max của biểu thức: H = \(\frac{2x^2+4x+5}{x^2+1}\)
16. Cho a, b, c là độ đài 3 cạnh của 1 tam giác.
CMR nếu ( a + b + c )2 = 3( ab + ac + bc ) thì tam giác đó là tam giác đều
17. Tìm giá trị nguyên của x, y trong đẳng thức 2x3 + xy = 7
18.Tìm x biết:
\(\frac{x+1}{2002}+\frac{x+2}{2001}+\frac{x+3}{2000}=\frac{x+4}{1999}+\frac{x+5}{1998}+\frac{x+6}{1997}\)
19. Tìm GTNN của biểu thức: P = x4 + 2x3 + 3x2 + 2x + 1