\(\dfrac{5}{3}\) \(\sqrt{15x}\)- \(\sqrt{15x}\) -2 = \(\dfrac{1}{3}\) \(\sqrt{15x}\)
\(\dfrac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\dfrac{1}{3}\sqrt{15x}\)
\(ĐK:x\ge0\\ PT\Leftrightarrow\dfrac{2}{3}\sqrt{15x}-\dfrac{1}{3}\sqrt{15x}=2\\ \Leftrightarrow\dfrac{1}{3}\sqrt{15x}=2\Leftrightarrow\sqrt{15x}=6\\ \Leftrightarrow15x=36\Leftrightarrow x=\dfrac{12}{5}\left(tm\right)\)
giải pt
\(\dfrac{5}{3\sqrt{15x}}-\sqrt{15x}+11=\dfrac{1}{3\sqrt{15x}}\)
Đặt \(\sqrt{15x}=a\)
Pt sẽ là \(\dfrac{5}{3a}-a+11=\dfrac{1}{3a}\)
=>\(\dfrac{4}{3a}=a-11\)
\(\Leftrightarrow3a^2-33a-4=0\)
=>\(a=11.12\)
=>căn 15x=11,12
=>15x=123,6544
hay \(x\simeq8,24\)
Tìm \(x\), biết :
a) \(\sqrt{\left(2x-1\right)^2}=3\)
b) \(\dfrac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\dfrac{1}{3}\sqrt{15x}\)
a) \(\sqrt{\left(2x-1\right)^2}=3\)
\(\Leftrightarrow\left|2x-1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
b) \(\dfrac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\dfrac{1}{3}\sqrt{15x}\)
\(\Leftrightarrow\dfrac{5}{3}\sqrt{15x}-\sqrt{15x}-\dfrac{1}{3}\sqrt{15x}=2\)
\(\Leftrightarrow\dfrac{1}{3}\sqrt{15x}=2\)
\(\Leftrightarrow\sqrt{15x}=6\)
\(\Leftrightarrow15x=6^2\Leftrightarrow15x=36\)
\(\Rightarrow x=\dfrac{5}{12}\)
Tìm x biết
a) \(\dfrac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\dfrac{1}{3}\sqrt{15x}\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c ) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
d) \(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x+1}\)
e ) \(\sqrt{4x^2+4x+1}=1\)
\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
<=> x + 1 = 16
<=> x = 15 (nhận)
~ ~ ~
\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow\sqrt{x+5}=2\)
<=> x + 5 = 4
<=> x = - 1 (nhận)
tính tan40°×tan45°×tan50°
#Help me -.-
Cho \(x=\dfrac{\sqrt[3]{4+\sqrt{15}}+\sqrt[3]{4-\sqrt{15}}+1}{2}\)
Tính \(P=12x^5+18x^4+4x^3-15x^2-21\)
chắc bạn chép sai đề rồi , hai căn đầu phải 1 cộng 1 trừ chứ
Đặt
\(x=\dfrac{y+1}{2}\Rightarrow y=2x-1\)
\(\Rightarrow y=\sqrt[3]{4+\sqrt{15}}+\sqrt[3]{4-\sqrt{15}}\)
\(y^3=8+3\sqrt[3]{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}=8+3y\)
\(\Rightarrow y^3-3y-8=0\\ \)
\(\Leftrightarrow8x^3-12x^2-6=0\)
\(\Rightarrow4x^3-6x^2-3=0\)
thay p vào ta có
\(P=12x^5-18x^4+4x^3-15x^2-21\)
\(=12x^5-18x^4-9x^2-4x^3-6x^2-21\)
\(=3x^2\left(4x^2-6x^2-3\right)+4x^3-6x^2-3\\ =3x^2.0+0-18\\ =-18\)
Tính M=\(\sqrt{15x^2-8x\sqrt{15}+16}\) với x=\(\sqrt{\dfrac{3}{5}}+\sqrt{\dfrac{5}{3}}\)
\(M=\sqrt{15x^2-8x\sqrt{15+16}}\)
\(\Leftrightarrow M=\sqrt{\left(\sqrt{15}.x+4\right)^2}=\left|\sqrt{15}.x+4\right|=\sqrt{15}.x+4\)
Thay \(x=\sqrt{\dfrac{3}{5}}+\sqrt{\dfrac{5}{3}}\) vào BT ta được:
\(M=\sqrt{15}.\left(\sqrt{\dfrac{3}{5}}+\sqrt{\dfrac{5}{3}}\right)+4=\sqrt{9}+\sqrt{25}+4=3+5+4=12\)
Vậy \(M=12\)
Tìm giơi han:
a) lim (x-> \(+\infty\)) \(\dfrac{\sqrt{x^2+1}+x}{5-2x}\)
b) lim (x->4) \(\left(\dfrac{\sqrt{15x+4}-\sqrt{x-3}-3}{-x+4}\right)\)
sorry, e k bt nhâp lim ..
\(a=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{1}{x^2}}+1}{\dfrac{5}{x}-2}=\dfrac{1+1}{-2}=-1\)
Câu b bạn coi lại đề, số cuối là \(-3\) hay \(-7\) nhỉ?
Kí hiệu lim làm theo thứ tự này:
Câu b số cuối là -3 thì nó hơi kì quặc (vì không phải dạng vô định, cứ thay số thôi):
\(=\lim\limits_{x\rightarrow4}\dfrac{\sqrt{15.4+4}-\sqrt{4-3}-3}{-4+4}=\dfrac{4}{0}=+\infty\)
\(\sqrt{2x^4+3x^3+12x^2+15x+10}-\dfrac{3x^2+3x+1}{3}=3\)
Ai giải giúp mình với, mình xin cảm ơn:
1. Tìm x,biết: \(\sqrt{4x}-3\sqrt{x}+2\sqrt{15x}=18\)
2. Rút gọn: B=\(\dfrac{1}{\sqrt{11-2\sqrt{30}}}-\dfrac{3}{7-2\sqrt{10}}\)
3. Chứng minh rằng: \(8+2\sqrt{10+2\sqrt{5}}+8-2\sqrt{10+2\sqrt{5}}=\sqrt{2}\left(\sqrt{5}+1\right)\)
3.
Ta có: \(VT=\)\(8+2\sqrt{10+2\sqrt{5}}+8-2\sqrt{10+2\sqrt{5}}\)
\(=8+8+\left(2\sqrt{10+2\sqrt{5}}-2\sqrt{10+2\sqrt{5}}\right)\)
\(=16\ne VP\)
⇒ Đề sai
1. Ta có: \(\sqrt{4x}\)- 3\(\sqrt{x}\)+2\(\sqrt{15x}\)=18
⇌2\(\sqrt{x}\)-3\(\sqrt{x}\) +2\(\sqrt{15x}\)=18
⇌\(-\sqrt{x}\) +2\(\sqrt{15x}\)-15 = 3
⇌-(\(\sqrt{x}\) -2\(\sqrt{15x}\)+15 )=3
⇌(\(\sqrt{x}\)-\(\sqrt{15}\))=-3 (vô lí)
Vậy không tìm được giá trị x thỏa mãn bài toán
2.Ta có: B=\(\dfrac{1}{\sqrt{11-2\sqrt{30}}}-\dfrac{3}{7-2\sqrt{10}}\)
= \(\dfrac{1}{\sqrt{6-2\sqrt{6.5}+5}}-\dfrac{3}{2-2\sqrt{2.5}+5}\)
=\(\dfrac{1}{\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}}-\dfrac{3}{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
=\(\dfrac{1}{\sqrt{6}-\sqrt{5}}-\dfrac{3}{\sqrt{3}-\sqrt{2}}\)
hình như đề sai