Cho hệ pt: x+y=1 và mx+2y=m
a) với m=3 giải hệ pt
b)tìm m để hệ pt có 1 nghiệm duy nhất, có voi số nghiệm
1/ cho hệ pt\(\hept{\begin{cases}x+2y=m\\2x+5y=1\end{cases}}\)a)giải hệ với m=1 . b)tìm m để hệ có nghiệm duy nhất thỏa mãn y=/x/
2/ cho hệ pt \(\hept{\begin{cases}x+my=2\\mx-2y=1\end{cases}}\)a) giải hệ với m=2 .b) tìm các số nguyên m để hệ có nghiệm duy nhất với x>0 và y<0 .
c) tìm các số nguyên m để hệ có nghiệm duy nhất thỏa mãn x>2y
HELP !!!
Cho hệ PT: x+my = 1 và -m + y = m
a, Giải hệ Pt khi m = 2
b, Chứng minh hệ PT có 1 nghiệm duy nhất
c, Tìm m để hệ có 1 nghiệm duy nhất sao cho x < 1; y <1
a: x+my=1 và -mx+y=m
Khi m=2 thì x+2y=1 và -2x+y=2
=>x=-3/5; y=4/5
b: 1/-m<>m/1
nên hệ luôn có nghiệm duy nhất
c: x+my=1 và -mx+y=m
=>x=1-my và -m(1-my)+y=m
=>x=1-my và -m+m^2y+y=m
=>x=1-my và y(m^2+1)=-2m
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-2m}{m^2+1}\\x=1-\dfrac{-2m^2}{m^2+1}=\dfrac{m^2+1+2m^2}{m^2+1}=\dfrac{3m^2+1}{m^2+1}\end{matrix}\right.\)
x<1; y<1
=>\(\left\{{}\begin{matrix}\dfrac{-2m}{m^2+1}-1< 0\\\dfrac{3m^2+1-m^2-1}{m^2+1}< 0\end{matrix}\right.\)
=>-2m-m^2-1<0 và 2m^2<0
=>\(m\in\varnothing\)
Cho hệ pt \(\left\{{}\begin{matrix}x-2y=5\\mx-y=4\end{matrix}\right.\)
a, giải hệ pt với m = 2
b, Tìm m đề hệ pt có nghiệm duy nhất ( x, y ) trong đó x, y trái dấu
c, Tìm m đề hệ pt có nghiệm duy nhất ( x, y ) thỏa mãn x = / y /
b, \(\left\{{}\begin{matrix}x-2y=5\\mx-y=4\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\m\left(5+2y\right)-y=4\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\5m+2my-y=4\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\2my-y=4-5m\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2y\\y\left(2m-1\right)=4-5m\end{matrix}\right.\)
Hpt trên có nghiệm duy nhất \(\Leftrightarrow\) 2m - 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) \(\dfrac{1}{2}\)
Khi đó ta có hpt:
\(\left\{{}\begin{matrix}x=5+2y\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5+2.\dfrac{4-5m}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)
Vậy với m \(\ne\) \(\dfrac{1}{2}\) thì hpt trên có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)
Vì x, y trái dấu nên ta xét 2 trường hợp
Th1: x > 0; y < 0
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{3}{2m-1}>0\\\dfrac{4-5m}{2m-1}< 0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2m-1>0\\4-5m< 0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m>\dfrac{4}{5}\end{matrix}\right.\)
\(\Leftrightarrow\) m > \(\dfrac{4}{5}\) (Thỏa mãn)
Th2: x < 0; y > 0
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{3}{2m-1}< 0\\\dfrac{4-5m}{2m-1}>0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2m-1< 0\\4-5m< 0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}m< \dfrac{1}{2}\\m>\dfrac{4}{5}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\dfrac{4}{5}< m< \dfrac{1}{2}\) (Vô lý)
Vậy m > \(\dfrac{4}{5}\) thì hpt có nghiệm duy nhất và thỏa mãn x, y trái dấu
c, Từ b ta có:
Với x \(\ne\) \(\dfrac{1}{2}\) hpt có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{4-5m}{2m-1}\end{matrix}\right.\)
Vì x = |y| \(\Leftrightarrow\) \(\dfrac{3}{2m-1}=\left|\dfrac{4-5m}{2m-1}\right|\)
Xét các trường hợp:
Th1: \(\dfrac{3}{2m-1}=\dfrac{4-5m}{2m-1}\)
\(\Leftrightarrow\) 3 = 4 - 5m (Vì m \(\ne\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) 5m = 1
\(\Leftrightarrow\) m = \(\dfrac{1}{5}\) (TM)
Th2: \(\dfrac{3}{2m-1}=\dfrac{5m-4}{2m-1}\)
\(\Leftrightarrow\) 3 = 5m - 4 (Vì m \(\ne\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) 5m = 7
\(\Leftrightarrow\) m = \(\dfrac{7}{5}\) (TM)
Vậy với m = \(\dfrac{1}{5}\); m = \(\dfrac{7}{5}\) thì hpt có nghiệm duy nhất và thỏa mãn x = |y|
Chúc bn học tốt!
Nguyễn Lê Phước Thịnh , Hồng Phúc , Nguyễn Thị Thuỳ Linh , Tan Thuy Hoang , Nguyễn Duy Khang , Nguyễn Trần Thành Đạt
b1 : cho hệ pt (m-1)x - my = 3m-1
2x-y =m+5
a) giải hệ pt khi m = 2
b) tìm m để hệ pt có nghiệm duy nhất sao cho \(x^2 -y^2=4 \)
b2 : cho hệ pt mx + y = 1
x + my = m + 1
với gtrị nào của m thì hệ pt có nghiệm duy nhất
với gtrị nào của m thì hệ pt có vô số nghiệm
với gtrị nào của m thì hệ pt vô nghiệm
Thay m=2 vào HPT ta có:
\(\left\{{}\begin{matrix}\left(2-1\right)x-2y=6-1\\2x-y=2+5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\-3y=3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
Vậy HPT có nghiemj (x;y) = (3;-11)
Cho hệ pt mx - y = 2 và 2x + my = 4.a) Giải hệ với m = 1. b) Tìm m để hệ có nghiệm duy nhất . Tìm nghiệm
1)Cho hệ pt : \(\left\{{}\begin{matrix}2x+3y=m\\-5x+y=-1\end{matrix}\right.\)
Tìm m để hệ pt có nghiệm x>0 ,y>0
2) Cho pt\(mx^2-2\left(m-1\right)x+m-1=0\) (m là tham số)
Tìm m để pt có nghiệm kép ,có nghiệm duy nhất
\(2)mx^2-2\left(m-1\right)x+m-1=0\)
Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow m=1\)
Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)
cho hệ pt (m-1)x -2y =1
3x +my =1 (với m là hàm số )
1) giải hệ pt khi m=căn 3 +1
2)CMR với mọi giá trị của tham số m ,hệ pt có nghiệm duy nhất
3)tìm m để x-y-1=0
1) Thay \(m=\sqrt{3}+1\) vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}\left(\sqrt{3}+1-1\right)x-2y=1\\3x+\left(\sqrt{3}+1\right)y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}x-2y=1\\3x+\left(\sqrt{3}+1\right)y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\sqrt{3}y=\sqrt{3}\\3x+\left(\sqrt{3}+1\right)y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{3}y-y\left(\sqrt{3}+1\right)=\sqrt{3}-1\\3x-2\sqrt{3}y=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{3}y-\sqrt{3}y-y=\sqrt{3}-1\\3x-2\sqrt{3}y=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\left(-3\sqrt{3}-1\right)=\sqrt{3}-1\\3x-2\sqrt{3}y=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-\sqrt{3}+1}{3\sqrt{3}+1}\\3x-2\sqrt{3}\cdot\dfrac{-\sqrt{3}+1}{3\sqrt{3}+1}=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-5+2\sqrt{3}}{13}\\3x=\sqrt{3}-\dfrac{12+10\sqrt{3}}{13}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-5+2\sqrt{3}}{13}\\x=\left(\dfrac{13\sqrt{3}-12-10\sqrt{3}}{13}\right)\cdot\dfrac{1}{3}=\dfrac{3\sqrt{3}-12}{13}\cdot\dfrac{1}{3}=\dfrac{\sqrt{3}-4}{13}\end{matrix}\right.\)
Vậy: Khi \(m=\sqrt{3}+1\) thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{\sqrt{3}-4}{13}\\y=\dfrac{-5+2\sqrt{3}}{13}\end{matrix}\right.\)
cho hệ pt x-2y=3-m (1) 2x+y=3(m+2) (2) a. giải hệ vs m=2 b. tìm tất các giá trị của m để hệ có nghiệm duy nhất c. tìm GTNN của A=x^2+y^2 trong đó x, y là nghiệm duy nhất của hệ d,. tìm m để hệ có nghiệm sao cho 5x-y=3
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m+1}{m^2}\ne\dfrac{-2}{-1}=2\)
=>\(2m^2\ne m+1\)
=>\(2m^2-m-1\ne0\)
=>\(\left(m-1\right)\left(2m+1\right)\ne0\)
=>\(m\notin\left\{1;-\dfrac{1}{2}\right\}\)
\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\m^2x-y=m^2+2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\2m^2\cdot x-2y=2m^2+4m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(2m^2-m-1\right)=2m^2+4m-m+1\\\left(m+1\right)x-2y=m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\cdot\left(m-1\right)\left(2m+1\right)=2m^2+3m+1=\left(m+1\right)\left(2m+1\right)\\\left(m+1\right)x-2y=m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{m+1}{m-1}\\2y=\left(m+1\right)x-\left(m-1\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{m+1}{m-1}\\2y=\dfrac{m^2+2m+1-\left(m-1\right)^2}{m-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{m+1}{m-1}\\y=\dfrac{m^2+2m+1-m^2+2m-1}{2m-2}=\dfrac{4m}{2m-2}=\dfrac{2m}{m-1}\end{matrix}\right.\)
Để x,y đều nguyên thì \(\left\{{}\begin{matrix}m+1⋮m-1\\2m⋮m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m-1+2⋮m-1\\2m-2+2⋮m-1\end{matrix}\right.\)
=>\(2⋮m-1\)
=>\(m-1\in\left\{1;-1;2;-2\right\}\)
=>\(m\in\left\{2;0;3;-1\right\}\)
\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\m^2x-y=m^2+2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\2m^2x-2y=2m^2+4m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m^2-m-1\right)x=2m^2+3m+1\\y=m^2x-m^2-2m\end{matrix}\right.\)
Pt có nghiệm duy nhất khi \(2m^2-m-1\ne0\Rightarrow m\ne\left\{1;-\dfrac{1}{2}\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{2m^2-2m-1}{2m^2+3m+1}=\dfrac{\left(m-1\right)\left(2m+1\right)}{\left(m+1\right)\left(2m+1\right)}=\dfrac{m-1}{m+1}\\y=m^2x-m^2-2m=\dfrac{-4m^2-2m}{m+1}\end{matrix}\right.\)
Để x nguyên \(\Rightarrow\dfrac{m-1}{m+1}\in Z\Rightarrow1-\dfrac{2}{m+1}\in Z\)
\(\Rightarrow\dfrac{2}{m+1}\in Z\)
\(\Rightarrow m+1=Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow m=\left\{-3;-2;0;1\right\}\)
Thay vào y thấy đều thỏa mãn y nguyên.
Vậy ...