Cần câu b,c
Câu a,b không cần làm ,chỉ cần làm câu c,d
Ko cần làm câu a đâu:3,mik cần câu b,c,d
Câu b bạn tự vẽ
Câu c:
PT hoành độ giao điểm: \(-3x+1=\left(1-2m\right)x+m-1\)
Mà 2 đt cắt tại hoành độ 1 nên \(x=1\)
\(\Leftrightarrow-2=1-2m+m-1\Leftrightarrow m=2\)
Câu d:
PT giao Ox,Oy lần lượt tại A,B của (d) là:
\(\left\{{}\begin{matrix}y=0\Rightarrow x=\dfrac{m-1}{2m-1}\Rightarrow A\left(\dfrac{m-1}{2m-1};0\right)\Rightarrow OA=\left|\dfrac{m-1}{2m-1}\right|\\x=0\Rightarrow y=m-1\Rightarrow B\left(0;m-1\right)\Rightarrow OB=\left|m-1\right|\end{matrix}\right.\)
Gọi H là chân đường cao từ O đến (d)
Đặt \(OH^2=t\)
Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{\left(2m-1\right)^2}{\left(m-1\right)^2}+\dfrac{1}{\left(m-1\right)^2}\)
\(\Leftrightarrow\dfrac{1}{t}=\dfrac{4m^2-4m+2}{\left(m-1\right)^2}\Leftrightarrow t=\dfrac{m^2-2m+1}{4m^2-4m+2}\\ \Leftrightarrow4m^2t-4mt+2t=m^2-2m+1\\ \Leftrightarrow m^2\left(4t-1\right)+2m\left(1-2t\right)+2t-1=0\)
Coi đây là PT bậc 2 ẩn m, PT có nghiệm
\(\Leftrightarrow\Delta'=\left(1-2t\right)^2-\left(4t-1\right)\left(2t-1\right)\ge0\\ \Leftrightarrow4t^2-4t+1-8t^2+6t-1\ge0\\ \Leftrightarrow2t-4t^2\ge0\\ \Leftrightarrow2t\left(1-2t\right)\ge0\\ \Leftrightarrow0\le t\le\dfrac{1}{2}\)
\(\Leftrightarrow OH^2\le\dfrac{1}{2}\Leftrightarrow OH\le\dfrac{1}{\sqrt{2}}\)
Dấu \("="\Leftrightarrow\dfrac{m^2-2m+1}{4m^2-4m+2}=\dfrac{1}{2}\Leftrightarrow4m^2-4m+2=2m^2-4m+2\)
\(\Leftrightarrow2m^2=0\Leftrightarrow m=0\)
Vậy m=0 thỏa yêu cầu đề
Mình đang cần câu b và câu c ạ
Tứ giác AOKC nội tiếp (K và A cùng nhìn OC dưới góc vuông)
\(\Rightarrow\widehat{ACO}=\widehat{AKO}\) (cùng chắn AO) (1)
Mà \(\widehat{ACO}=\widehat{IAO}\) (cùng phụ \(\widehat{AOC}\)) (2)
\(\widehat{IAO}=\widehat{OIA}\) (\(OI=OA\) nên tam giác OIA cân tại O) (3)
(1);(2);(3) \(\Rightarrow\widehat{OIA}=\widehat{AKO}\)
Do \(\widehat{OIA}\) và \(\widehat{AKO}\) cùng chắn OA \(\Rightarrow OKIA\) nội tiếp
c. Theo cmt \(\Rightarrow\widehat{AIK}+\widehat{AOK}=180^0\)
AOKC nội tiếp (như đầu câu b đã nói) \(\Rightarrow\widehat{AOK}+\widehat{ACK}=180^0\)
\(\Rightarrow\widehat{AIK}=\widehat{ACK}\) (4)
Lại có tứ giác ACDH nội tiếp (D và H cùng nhìn AC dưới 1 góc vuông)
\(\Rightarrow\widehat{ACK}+\widehat{AHD}=180^0\) mà \(\widehat{AHD}+\widehat{MHD}=180^0\Rightarrow\widehat{ACK}=\widehat{MDH}\) (5)
(4);(5) \(\Rightarrow\widehat{AIK}=\widehat{MHD}\Rightarrow DH||IK\) (2 góc so le trong bằng nhau)
\(\Rightarrow\dfrac{DM}{KM}=\dfrac{HM}{IM}\) (định lý Talet)
Mặt khác \(CH||IB\) (cùng vuông góc AB)
\(\Rightarrow\dfrac{CM}{BM}=\dfrac{HM}{IM}\)
\(\Rightarrow\dfrac{DM}{KM}=\dfrac{CM}{BM}\Rightarrow DM.BM=KM.CM\)
giúp câu c, ko cần làm câu a,b
a: Xét ΔABD vuông tại D và ΔCBA vuông tại A có
góc B chung
=>ΔABD đồng dạng vơi ΔCBA
=>BA^2=BD*BC
b: Xét ΔBIC vuông tại I và ΔBDH vuông tại D có
góc DBH chung
=>ΔBIC đồng dạng với ΔBDH
=>BD*BC=BI*BH
c: BA=BK
BD*BC=BI*BH
mà BA^2=BD*BC
nên BK^2=BI*BH
=>ΔBKH vuông tại K
M.n giúp mik câu b vs câu c ạ mik cần gấp
\(R_{tđ}=R_1+R_2=100+80=180\Omega\)
\(I_1=I_2=I=\dfrac{U}{R}=\dfrac{210}{180}=\dfrac{7}{6}A\)
Chiều dài 1 vòng quấn:
\(C=\pi\cdot d=0,25\pi\left(m\right)\)
Chiều dài dây dẫn:
\(l=n\cdot C=120\cdot0,25\pi=94,25m\)
Tiết diện dây:
\(S=\rho\dfrac{l}{R_2}=0,5\cdot10^{-6}\cdot\dfrac{94,25}{80}=5,89\cdot10^{-7}m^2\)
a) vì R1 mắc nối tiếp với R2
=> Rtđ=R1+R2=100+80=180 (Ω)
b) cường độ dòng điện qua mỗi điện trở và mạch chính là :
I=I1=I2=U/Rtđ=240/180=4/3 (A)
c) chiều dài 1 vòng quấn là :
l1=3,14.0,025=0,0785m
chiều dài dây dẫn là
l=120.0,0785=9,42 vòng
tiết diện của dây dẫn là
R=p. l/S => S= l.p/R =0,5.10^-6 .9,42/80=5,89.10^-8 m^2
Câu a em giải được rồi ạ. Cần câu b,c thôi/
b Ta có \(\Lambda ABE=\dfrac{1}{2}sđ\cap BE,\Lambda AFB=\dfrac{1}{2}sđ\cap BE\Rightarrow\Lambda ABE=\Lambda AFB\)
Mà \(\Lambda EAB=\Lambda BAF\) \(\Rightarrow\Delta EAB\sim\Delta BAF\left(g.g\right)\Rightarrow\dfrac{EA}{BA}=\dfrac{AB}{ÀF}\Rightarrow AE\cdot AF=AB^2\left(1\right)\)
Áp dụng hệ thức lượng giác vào \(\Delta AOB\) có:(BH vuông góc với AO)
\(\Rightarrow AH\cdot AO=AB^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow AH\cdot AO=AE\cdot AF\)
a) Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là tứ giác nội tiếp
\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét (O) có
\(\widehat{BFE}\) là góc nội tiếp chắn \(\stackrel\frown{BE}\)
\(\widehat{ABE}\) là góc tạo bởi dây cung BE và tiếp tuyến BA
Do đó: \(\widehat{BFE}=\widehat{ABE}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)
\(\Leftrightarrow\widehat{BFA}=\widehat{EBA}\)
Xét ΔBFA và ΔEBA có
\(\widehat{BFA}=\widehat{EBA}\)(cmt)
\(\widehat{ABF}\) là góc chung
Do đó: ΔBFA∼ΔEBA(g-g)
\(\Leftrightarrow\dfrac{AF}{AB}=\dfrac{AB}{AE}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=AF\cdot AE\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBOA vuông tại B có BH là đường cao ứng với cạnh huyền AO, ta được:
\(AB^2=AH\cdot AO\)(2)
Từ (1) và (2) suy ra \(AF\cdot AE=AH\cdot AO\)(đpcm)
c Nối OM \(\Rightarrow OM\) vuông góc với EF(do OM là đường nối từ tâm O đến trung điểm của dây cung EF)
\(\Rightarrow\Lambda AMO=\Lambda AHK=90^0\) Mà \(\Lambda OAM=\Lambda KAH\)
\(\Rightarrow\Delta OAM\sim\Delta KAH\left(g.g\right)\) \(\Rightarrow\dfrac{AM}{AH}=\dfrac{AO}{AK}\Rightarrow AM\cdot AK=AH\cdot AO\left(3\right)\)
Từ câu b có \(AH\cdot AO=AE\cdot AF\left(4\right)\)
Từ (3) và (4) \(\Rightarrow AM\cdot AK=AE\cdot AF\Rightarrow\dfrac{1}{AM\cdot AK}=\dfrac{1}{AE\cdot AF}\Rightarrow\dfrac{1}{AK}=\dfrac{AM}{AE\cdot AF}\Rightarrow\dfrac{2}{AK}=\dfrac{2AM}{AE\cdot AF}\Rightarrow\dfrac{AE+AF}{AE\cdot AF}=\dfrac{2}{AK}\Rightarrow\dfrac{1}{AE}+\dfrac{1}{ÀF}=\dfrac{2}{AK}\Rightarrow\dfrac{AK}{AE}+\dfrac{AK}{AF}=2\)
một xe cần cẩu nâng một vật lên, Vậy xe cần cẩu đã tác dụng vào vật một lực:
Câu A: lực kéo
Câu B : lực đẩy
Câu C : lục nâng
Câu D : lực hút
Chọn câu nào ạ
em cần giải gấp câu b,c theo hệ thức lượng cần gấp ạ
b)\(\Delta DBC\) vuông tại B có đường cAO BA nên
\(\dfrac{1}{AB^2}=\dfrac{1}{BD^2}+\dfrac{1}{BC^2}\)
\(\Leftrightarrow\dfrac{1}{BD^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}=\dfrac{16}{225}\)
\(\Leftrightarrow BD=\dfrac{15}{4}\left(cm\right)\)
\(AD=\sqrt{BD^2-AB^2}=\dfrac{9}{4}\left(cm\right)\)
c)\(\Delta ABD\) vuông tại A có đường cao AF nên
\(BF.BD=AB^2\left(1\right)\)
\(\Delta BAC\) vuông tại có đường cao AE nên
\(BE.BC=AB^2\left(2\right)\)
từ \(\left(1\right)và\left(2\right)\Rightarrow BF.BD=BE.BC\)
mình cần câu b,c ạ
a: Xét tứ giác AMCN có
O là trung điểm của AC
O là trung điểm của MN
Do đó: AMCN là hình bình hành