b Ta có \(\Lambda ABE=\dfrac{1}{2}sđ\cap BE,\Lambda AFB=\dfrac{1}{2}sđ\cap BE\Rightarrow\Lambda ABE=\Lambda AFB\)
Mà \(\Lambda EAB=\Lambda BAF\) \(\Rightarrow\Delta EAB\sim\Delta BAF\left(g.g\right)\Rightarrow\dfrac{EA}{BA}=\dfrac{AB}{ÀF}\Rightarrow AE\cdot AF=AB^2\left(1\right)\)
Áp dụng hệ thức lượng giác vào \(\Delta AOB\) có:(BH vuông góc với AO)
\(\Rightarrow AH\cdot AO=AB^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow AH\cdot AO=AE\cdot AF\)
a) Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là tứ giác nội tiếp
\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét (O) có
\(\widehat{BFE}\) là góc nội tiếp chắn \(\stackrel\frown{BE}\)
\(\widehat{ABE}\) là góc tạo bởi dây cung BE và tiếp tuyến BA
Do đó: \(\widehat{BFE}=\widehat{ABE}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)
\(\Leftrightarrow\widehat{BFA}=\widehat{EBA}\)
Xét ΔBFA và ΔEBA có
\(\widehat{BFA}=\widehat{EBA}\)(cmt)
\(\widehat{ABF}\) là góc chung
Do đó: ΔBFA∼ΔEBA(g-g)
\(\Leftrightarrow\dfrac{AF}{AB}=\dfrac{AB}{AE}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=AF\cdot AE\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBOA vuông tại B có BH là đường cao ứng với cạnh huyền AO, ta được:
\(AB^2=AH\cdot AO\)(2)
Từ (1) và (2) suy ra \(AF\cdot AE=AH\cdot AO\)(đpcm)
c Nối OM \(\Rightarrow OM\) vuông góc với EF(do OM là đường nối từ tâm O đến trung điểm của dây cung EF)
\(\Rightarrow\Lambda AMO=\Lambda AHK=90^0\) Mà \(\Lambda OAM=\Lambda KAH\)
\(\Rightarrow\Delta OAM\sim\Delta KAH\left(g.g\right)\) \(\Rightarrow\dfrac{AM}{AH}=\dfrac{AO}{AK}\Rightarrow AM\cdot AK=AH\cdot AO\left(3\right)\)
Từ câu b có \(AH\cdot AO=AE\cdot AF\left(4\right)\)
Từ (3) và (4) \(\Rightarrow AM\cdot AK=AE\cdot AF\Rightarrow\dfrac{1}{AM\cdot AK}=\dfrac{1}{AE\cdot AF}\Rightarrow\dfrac{1}{AK}=\dfrac{AM}{AE\cdot AF}\Rightarrow\dfrac{2}{AK}=\dfrac{2AM}{AE\cdot AF}\Rightarrow\dfrac{AE+AF}{AE\cdot AF}=\dfrac{2}{AK}\Rightarrow\dfrac{1}{AE}+\dfrac{1}{ÀF}=\dfrac{2}{AK}\Rightarrow\dfrac{AK}{AE}+\dfrac{AK}{AF}=2\)