Bài 7: Tứ giác nội tiếp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tthnew

Không có mô tả ảnh.

Câu a em giải được rồi ạ. Cần câu b,c thôi/

Nguyễn Trọng Chiến
28 tháng 2 2021 lúc 14:26

b Ta có \(\Lambda ABE=\dfrac{1}{2}sđ\cap BE,\Lambda AFB=\dfrac{1}{2}sđ\cap BE\Rightarrow\Lambda ABE=\Lambda AFB\)

Mà \(\Lambda EAB=\Lambda BAF\) \(\Rightarrow\Delta EAB\sim\Delta BAF\left(g.g\right)\Rightarrow\dfrac{EA}{BA}=\dfrac{AB}{ÀF}\Rightarrow AE\cdot AF=AB^2\left(1\right)\)

Áp dụng hệ thức lượng giác vào \(\Delta AOB\) có:(BH vuông góc với AO)

\(\Rightarrow AH\cdot AO=AB^2\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AH\cdot AO=AE\cdot AF\)

 

Nguyễn Lê Phước Thịnh
28 tháng 2 2021 lúc 14:34

a) Xét tứ giác ABOC có

\(\widehat{ABO}\) và \(\widehat{ACO}\) là tứ giác nội tiếp

\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét (O) có

\(\widehat{BFE}\) là góc nội tiếp chắn \(\stackrel\frown{BE}\)

\(\widehat{ABE}\) là góc tạo bởi dây cung BE và tiếp tuyến BA

Do đó: \(\widehat{BFE}=\widehat{ABE}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)

\(\Leftrightarrow\widehat{BFA}=\widehat{EBA}\)

Xét ΔBFA và ΔEBA có 

\(\widehat{BFA}=\widehat{EBA}\)(cmt)

\(\widehat{ABF}\) là góc chung

Do đó: ΔBFA∼ΔEBA(g-g)

\(\Leftrightarrow\dfrac{AF}{AB}=\dfrac{AB}{AE}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=AF\cdot AE\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBOA vuông tại B có BH là đường cao ứng với cạnh huyền AO, ta được:

\(AB^2=AH\cdot AO\)(2)

Từ (1) và (2) suy ra \(AF\cdot AE=AH\cdot AO\)(đpcm)

Nguyễn Trọng Chiến
28 tháng 2 2021 lúc 14:43

c Nối OM \(\Rightarrow OM\) vuông góc với EF(do OM là đường nối từ tâm O đến trung điểm của dây cung EF)

\(\Rightarrow\Lambda AMO=\Lambda AHK=90^0\) Mà \(\Lambda OAM=\Lambda KAH\)

\(\Rightarrow\Delta OAM\sim\Delta KAH\left(g.g\right)\) \(\Rightarrow\dfrac{AM}{AH}=\dfrac{AO}{AK}\Rightarrow AM\cdot AK=AH\cdot AO\left(3\right)\)

Từ câu b có \(AH\cdot AO=AE\cdot AF\left(4\right)\)

Từ (3) và (4) \(\Rightarrow AM\cdot AK=AE\cdot AF\Rightarrow\dfrac{1}{AM\cdot AK}=\dfrac{1}{AE\cdot AF}\Rightarrow\dfrac{1}{AK}=\dfrac{AM}{AE\cdot AF}\Rightarrow\dfrac{2}{AK}=\dfrac{2AM}{AE\cdot AF}\Rightarrow\dfrac{AE+AF}{AE\cdot AF}=\dfrac{2}{AK}\Rightarrow\dfrac{1}{AE}+\dfrac{1}{ÀF}=\dfrac{2}{AK}\Rightarrow\dfrac{AK}{AE}+\dfrac{AK}{AF}=2\)


Các câu hỏi tương tự
Uyên
Xem chi tiết
Tuệ Anh
Xem chi tiết
Tuệ Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
Xem chi tiết
Bảo Nhi
Xem chi tiết
trà my
Xem chi tiết
Tuệ Anh
Xem chi tiết
Tuệ Anh
Xem chi tiết
Tuệ Anh
Xem chi tiết