cho u, v thỏa (u căn(u^2 2)(v-1 căn(v^2-2v 3)=2 .CMR:u^3 v^3 3uv=1. Giups mik vs
cho u, v thỏa thuộc R (u+căn(u^2+2)(v-1+căn(v^2-2v+3)=2 .CMR:u^3+v^3+3uv=1.giúp với các bạn
cho u, v thỏa (u+căn(u^2+2)(v-1+căn(v^2-2v+3)=2 .CMR:u^3+v^3+3uv=1. CẦN GẤP . CẢM ƠN MỌI NGƯỜI TRƯỚC
Tim các số thực u, v thỏa mãn: \(\left(u+\sqrt{u^2+2}\right)\left(v-1+\sqrt{v^2-2v+3}\right)=2\)
CM: \(u^3+v^3+3uv=1\)
Ta có: \(\hept{\begin{cases}\left(\sqrt{u^2+2}+u\right)\left(\sqrt{u^2+2}-u\right)=2\\\left(\sqrt{v^2-2v+3}+v-1\right)\left(\sqrt{v-2v+3}-v+1\right)=2\end{cases}}\)
Theo đề bài thì ta có:
\(\left(u+\sqrt{u^2+2}\right)\left(v-1+\sqrt{v^2-2v+3}\right)=2\)
Từ đây ta có hệ:
\(\hept{\begin{cases}\sqrt{u^2+2}-u=\sqrt{v^2-2v+3}+v-1\left(1\right)\\\sqrt{u^2+2}+u=\sqrt{v^2-2v+3}-v+1\left(2\right)\end{cases}}\)
Lấy (1) - (2) ta được: \(u+v=1\)
Ta có: \(u^3+v^3+3uv=1\)
\(\Leftrightarrow3uv+u^2-uv+v^2=1\)
\(\Leftrightarrow\left(u+v\right)^2=1\)(đúng)
\(\Rightarrow\)ĐPCM
chung minh : 2 ( u2 - v2 ) = 3uv <=> u = 2v
Vì cái này có hai chiều lên ta phải CM hai lần
(+) nếu 2 (u^2 - v^2) = 3uv => u = 2v
TA có 2( u^2 - v^2) = 3uv => 2u^2 - 2v^2 - 3uv = 0 => 2u^2 - 4uv + uv - 2v^2 = 0
=> 2u(u - 2v) + v ( u - 2v) = 0
=> ( 2u + v )( u - 2v) = 0
=> 2u + v = 0 hoặc u - 2v = 0 => u = 2v
(+) CM ngược lại
ĐK : u, v > 0 , u khác v
\(=\frac{\left(\sqrt{u}-\sqrt{v}\right)\left(\sqrt{u}+\sqrt{v}\right)}{\sqrt{u}+\sqrt{v}}-\frac{\left(\sqrt{u}+\sqrt{v}\right)\left(u-\sqrt{uv}+v\right)}{\left(\sqrt{u}-\sqrt{v}\right)\left(\sqrt{u}+\sqrt{v}\right)}\)
\(=\sqrt{u}-\sqrt{v}-\frac{u-\sqrt{uv}+v}{\sqrt{u}-\sqrt{v}}\)
\(=\frac{u-2\sqrt{uv}+v-u+\sqrt{uv}-v}{\sqrt{u}-\sqrt{v}}=\frac{-\sqrt{uv}}{\sqrt{u}-\sqrt{v}}\)
Câu 1:Giải phương trình:
(3-x)căn((3+x)(9+x^2))=4 căn(5(3-x))
Câu 2:Tính x/y biết x>1,y<0 và (x+y)(x^3-y^3)căn((1-căn(4x-1))^2)/(1-căn(4x-1))(x^2y^2+xy^3+y^4)
Đoạn mạch RLC có R=10ôm, L=1/10pi(H), C= 10-3/2pi (F). biết điện áp giữa 2 đầu cuộn thuần cảm L là uL =20 căn 2cos(100pi t+pi/2)V. Viết biểu thức điện áp giữa 2 đầu đoạn mạch
A. u=40cos(100pi t +pi/4) V
B. u=40cos(100pi t - pi/4) V
C. u=40 căn 2 (100pi t +pi/4) V
D. u=40 căn 2 (100pi t- pi/4) V
\(Z_L=\omega L=10\Omega\)
\(Z_C=\frac{1}{\omega C}=20\Omega\)
Ta có giản đồ véc tơ
Ta có: \(U_L=U_R=\frac{U_C}{2}\)
Từ giản đồ véc tơ ta có:
\(U_0=U_{0L}\sqrt{2}=20\sqrt{2}\sqrt{2}=40V\)
u trễ pha \(\frac{3\pi}{4}\) với uL
\(\Rightarrow u=40\cos\left(100\pi t+\frac{\pi}{2}-\frac{3\pi}{4}\right)\)
\(\Rightarrow u=40\cos\left(100\pi t-\frac{\pi}{4}\right)\)(V)
Chọn B.
B1:CM các đẳng thức sau
a) -u2+ 3u- 2/(u+2) ( u-1)= u2- 4u +4/ 4- u2 với u≠ +-2 và u≠ 1
b) v3 +27/v2-3v+9 = v+3
B2.Trong mỗi đẳng thức sau, hãy tìm đa thức M
a) 3x2 -2x -5/M = 3x-5/2x-3vs x ≠ -1 và x ≠ 3/2
b) 2x2 +3x-2/ x2 -4= M/ x2 -4x+4 vs x ≠ +-2
B3 Tìm đa thức N thỏa mãn mỗi đẳng thức sau
a)x+1/ N= x2 -2x+4/ x3 +8 vs x≠ -1 và x ≠ -2
b) (x-3) N/ 3+x= 2x3-8x2 -6x+36/ 2+x vs x ≠+-3 và x ≠ -2
GIÚP MIK VS MIK ĐANG CẦN GẤP !!! QAQ!
Bài 1:
a) Ta có: \(VT=\frac{-u^2+3u-2}{\left(u+2\right)\left(u-1\right)}\)
\(=\frac{-\left(u^2-3u+2\right)}{\left(u+2\right)\left(u-1\right)}\)
\(=\frac{-\left(n^2-u-2u+2\right)}{\left(u+2\right)\left(u-1\right)}\)
\(=\frac{-\left[u\left(u-1\right)-2\left(u-1\right)\right]}{\left(u+2\right)\left(u-1\right)}\)
\(=\frac{-\left(u-1\right)\left(u-2\right)}{\left(u+2\right)\left(u-1\right)}\)
\(=\frac{2-u}{u+2}\)(1)
Ta có: \(VP=\frac{u^2-4u+4}{4-u^2}\)
\(=\frac{\left(u-2\right)^2}{-\left(u-2\right)\left(u+2\right)}\)
\(=\frac{-\left(u-2\right)}{u+2}\)
\(=\frac{2-u}{u+2}\)(2)
Từ (1) và (2) suy ra \(\frac{-u^2+3u-2}{\left(u+2\right)\left(u-1\right)}=\frac{u^2-4u+4}{4-u^2}\)
b) Ta có: \(VT=\frac{v^3+27}{v^2-3v+9}\)
\(=\frac{\left(v+3\right)\left(v^3-3u+9\right)}{v^2-3u+9}\)
\(=v+3=VP\)(đpcm)
Bài 2:
a) Ta có: \(\frac{3x^2-2x-5}{M}=\frac{3x-5}{2x-3}\)
\(\Leftrightarrow\frac{3x^2-5x+3x-5}{M}=\frac{3x-5}{2x-3}\)
\(\Leftrightarrow\frac{x\left(3x-5\right)+\left(3x-5\right)}{M}=\frac{3x-5}{2x-3}\)
\(\Leftrightarrow\frac{\left(3x-5\right)\left(x+1\right)}{M}=\frac{3x-5}{2x-3}\)
\(\Leftrightarrow M=\frac{\left(3x-5\right)\left(x+1\right)\left(2x-3\right)}{3x-5}\)
\(\Leftrightarrow M=\left(x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow M=2x^2-3x+2x-3\)
hay \(M=2x^2-x-3\)
Vậy: \(M=2x^2-x-3\)
b) Ta có: \(\frac{2x^2+3x-2}{x^2-4}=\frac{M}{x^2-4x+4}\)
\(\Leftrightarrow\frac{2x^2+4x-x-2}{\left(x-2\right)\left(x+2\right)}=\frac{M}{\left(x-2\right)^2}\)
\(\Leftrightarrow\frac{2x\left(x+2\right)-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{M}{\left(x-2\right)^2}\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(2x-1\right)}{\left(x+2\right)\left(x-2\right)}=\frac{M}{\left(x-2\right)^2}\)
\(\Leftrightarrow\frac{M}{\left(x-2\right)^2}=\frac{2x-1}{x-2}\)
\(\Leftrightarrow M=\frac{\left(2x-1\right)\left(x-2\right)^2}{\left(x-2\right)}\)
\(\Leftrightarrow M=\left(2x-1\right)\left(x-2\right)\)
\(\Leftrightarrow M=2x^2-4x-x+2\)
hay \(M=2x^2-5x+2\)
Vậy: \(M=2x^2-5x+2\)
Bài 3:
a) Ta có: \(\frac{x+1}{N}=\frac{x^2-2x+4}{x^3+8}\)
\(\Leftrightarrow\frac{x+1}{N}=\frac{x^2-2x+4}{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(\Leftrightarrow\frac{x+1}{N}=\frac{1}{x+2}\)
\(\Leftrightarrow N=\left(x+1\right)\left(x+2\right)\)
hay \(N=x^2+3x+2\)
Vậy: \(N=x^2+3x+2\)
n) Ta có: \(\frac{\left(x-3\right)\cdot N}{3+x}=\frac{2x^3-8x^2-6x+36}{2+x}\)
\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=\frac{2x^3+4x^2-12x^2-24x+18x+36}{x+2}\)
\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{\left(x+3\right)}=\frac{2x^2\left(x+2\right)-12x\left(x+2\right)+18\left(x+2\right)}{x+2}\)
\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=\frac{\left(x+2\right)\left(2x^2-12x+18\right)}{x+2}\)
\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=2x^2-12x+18\)
\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=2x^2-6x-6x+18=2x\left(x-3\right)-6\left(x-3\right)=2\cdot\left(x-3\right)^2\)
\(\Leftrightarrow N\cdot\left(x-3\right)=\frac{2\left(x-3\right)^2}{x+3}\)
\(\Leftrightarrow N=\frac{2\left(x-3\right)^2}{x+3}:\left(x-3\right)=\frac{2\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\)
\(\Leftrightarrow N=\frac{2\left(x-3\right)}{x+3}\)
hay \(N=\frac{2x-6}{x+3}\)
Vậy: \(N=\frac{2x-6}{x+3}\)
Bài 1. Rút gọn biểu thức:
b) A=(u-v)3+3uv(u+v)
c) C=6(c-d)(c+d)+2(c-d)2-(c-d)3
Bài 2. Tính nhanh:
a) 1013 b) 2993 c) 993
Bài 2.
a) 1013 = (100+1)3 = 1003+3.1002.1+3.100.12+13
= 1000000+30000+300+1 = 1030301
b) 2993 = (300-1)3 = 3003-3.3002.1+3.300.12-13
= 27000000 - 270000 + 900 -1 = 26730899
c) 993 = (100-1)3 = 1003-3.1002.1+3.100.12-1
= 1000000 - 30000 + 300 -1 = 970299
\(1,\\ b,A=\left(u-v\right)^3+3uv\left(u+v\right)\\ A=u^3-3u^2v+3uv^2-v^3+3u^2v+3uv^2=u^3-v^3\\ c,6\left(c-d\right)\left(c+d\right)+2\left(c-d\right)^2-\left(c-d\right)^3\\ =6c^2-6d^2+2c^2-4cd+2d^2-c^3+3c^2d-3cd^2+d^3\\ =8c^2-c^3-4d^2-4cd+3c^2d-3cd^2+d^3\)
\(2,\\ a,101^3=\left(100+1\right)^3\\ =100^3+3\cdot10000\cdot1+3\cdot100\cdot1+1\\ =1000000+30000+300+1=1030301\\ b,299^3=\left(300-1\right)^3\\ =300^3-3\cdot90000\cdot1+3\cdot300\cdot1-1\\ =27000000-270000+900-1\\ =26730899\\ c,99^3=\left(100-1\right)^3\\ =100^3-3\cdot10000\cdot1+3\cdot100\cdot1-1\\ =1000000-30000+300-1=970299\)
Bài 1:
a.
$A=u^3-3u^2v+3uv^2-v^3+3uv^2+3u^2v$
$=u^3+6uv^2-v^3$
c.
$C=(c-d)[6(c+d)+2(c-d)-(c-d)^2]$
$=(c-d)[8c+4d-(c^2-2cd+d^2)]=(c-d)(-c^2+2cd-d^2+8c+4d)$