Giải phương trình nghiệm nguyên x3-y3-2y2-3y-1=0
Giải phương trình nghiệm nguyên x3-y3-2y2-3y-1=0
giải bất pt và biểu diễn tập nghiệm trên trục số: \(\dfrac{x+1}{3}>\dfrac{2x-1}{6}-2\)
\(\dfrac{x+1}{3}>\dfrac{2x-1}{6}-2\)
\(\Leftrightarrow2\left(x+1\right)>2x-1-12\)
\(\Leftrightarrow2x+2>2x-13\) \(\Leftrightarrow2x-2x>-13-2\)
\(\Leftrightarrow0x>-15\) ( luôn đúng)
Vậy bpt trên có vô số nghiệm
\(\Rightarrow\) k cần phải biểu diễn trên trục số
=>\(\dfrac{\left(x+1\right)2}{6}\)>\(\dfrac{2x-1}{6}-\dfrac{12}{6}\)
<=>2x-1>2x-1-12 <=>2x-2x>1-1-12
<=>0x=-12 (vô lý)
vay x thuộc rỗng
CMR: \(\dfrac{n^4+3n^3+2n^2+6n-2}{n^2+2}\). có giá trị là 1 số nguyên với n€N
Ta có: \(\dfrac{n^4+3n^3+2n^2+6n-2}{n^2+2}\)
\(=\dfrac{\left(n^4+2n^2\right)+\left(3n^3+6n\right)-2}{n^2+2}\)
\(=\dfrac{n^2\left(n^2+2\right)+3n\left(n^2+2\right)-2}{n^2+2}\)
\(=\dfrac{n^2\left(n^2+2\right)+3n\left(n^2+2\right)}{n^2+2}-\dfrac{2}{n^2+2}\)
Ta thấy: \(n^2\left(n^2+2\right)⋮n^2+2;3n\left(n^2+2\right)⋮n^2+2\)
\(\Rightarrow n^2\left(n^2+2\right)+3n\left(n^2+2\right)⋮n^2+2\)
\(\dfrac{2}{n^2+2}=\dfrac{4}{2n^2+4}=\dfrac{4}{2\left(n^2+2\right)}\)
do \(4⋮2\Rightarrow4⋮2\left(n^2+2\right)\) (đoạn này mk ko chắc chắn cho lắm ~.~)
Khi đó: \(n^2\left(n^2+2\right)+3n\left(n^2+2\right)-2⋮n^2+2\)
-> ĐPCM.
Chứng minh rằng phân số \(\dfrac{n^7+n^2+1}{n^8+n+1}\)không tối giản với mọi n thuộc Z
Lời giải:
Ta có:
\(n^7+n^2+1=n^7-n+n+n^2+1=n(n^6-1)+n^2+n+1\)
\(=n(n^3-1)(n^3+1)+n^2+n+1\)
\(=n(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)
\(=(n^2+n+1)[n(n-1)(n^3+1)+1]\)
\(=(n^2+n+1)(n^5-n^4+n^2-n+1)\)
Và:
\(n^8+n+1=n^8-n^2+n^2+n+1\)
\(=n^2(n^6-1)+(n^2+n+1)\)
\(=n^2(n^3-1)(n^3+1)+(n^2+n+1)=n^2(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)
\(=(n^2+n+1)(n^6-n^5+n^3-n^2+1)\)
Như vậy giữa $n^7+n^2+1$ và $n^8+n+1$ đều có ước chung là $n^2+n+1\neq \pm 1$ với mọi $n\neq 0;-1$ và nguyên nên phân số đã cho không tối giản.
Lời giải:
Ta có:
\(n^7+n^2+1=n^7-n+n+n^2+1=n(n^6-1)+n^2+n+1\)
\(=n(n^3-1)(n^3+1)+n^2+n+1\)
\(=n(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)
\(=(n^2+n+1)[n(n-1)(n^3+1)+1]\)
\(=(n^2+n+1)(n^5-n^4+n^2-n+1)\)
Và:
\(n^8+n+1=n^8-n^2+n^2+n+1\)
\(=n^2(n^6-1)+(n^2+n+1)\)
\(=n^2(n^3-1)(n^3+1)+(n^2+n+1)=n^2(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)
\(=(n^2+n+1)(n^6-n^5+n^3-n^2+1)\)
Như vậy giữa $n^7+n^2+1$ và $n^8+n+1$ đều có ước chung là $n^2+n+1\neq \pm 1$ với mọi $n\neq 0;-1$ và nguyên nên phân số đã cho không tối giản.
Cho biết ax + by + cz = 0
Rút gọn \(A=\dfrac{bc\left(y-z\right)^2+ca\left(z-x\right)^2+ab\left(x-y\right)^2}{ax^2+by^2+cz^2}\)
Ta có: \(B=bc\left(y-z\right)^2+ca\left(z-x\right)^2+ab\left(x-y\right)^2\)
\(=bcy^2+bcz^2+caz^2+cax^2+aby^2-2\left(bcyz+acxz+abxy\right)\) (1)
Từ giả thiết suy ra:
\(a^2x^2+b^2y^2+c^2z^2+2\left(bcyz+acxz+abxy\right)=0\) (2)
Từ (1) và (2) suy ra:
\(B=ax^2\left(b+c\right)+by^2\left(a+c\right)+cz^2\left(a+b\right)+a^2x^2+b^2y^2+c^2z^2\)
\(=ax^2\left(a+b+c\right)+by^2\left(a+b+c\right)+cz^2\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\)
Do đó: \(A=\dfrac{B}{ax^2+by^2+cz^2}=a+b+c\)
Đặt: B = bc(y-z)2 + ca(z-x)2 + ab(x-y)2
= bcy2 + bcz2 + caz2 + cax2 + abx2 + aby2 - 2(bcyz + acxz + abxy) (1)
=> a2x2 + b2y2 + c2z2 + 2(bcyz + acxz + abxy) = 0 (2)
Từ (1) và (2) suy ra:
B = ax2(b+c) + by2(a+c) + cz2(a+b) + a2x2 + b2y2 + c2z2
= ax2(a+b+c) + by2(a+b+c) + cz2(a+b+c)
= (az2+by2+cz2)(a+b+c)
Vậy \(A=\dfrac{B}{ax^2+by^2+cz^2}=a+b+c\)
Với giá trị nào của x thì
\(\dfrac{\left(2x-3\right)}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn giá trị \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
\(\dfrac{\left(2x-3\right)}{35}+\dfrac{x\left(x-2\right)}{7}\le\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
\(\Leftrightarrow2x-3+5x^2-10x\le5x^2-7\left(2x-3\right)\)
\(\Leftrightarrow5x^2-8x-3\le5x^2-14x+21\)
=>-8x-3<=-14x+21
=>6x<=24
hay x<=4
1) Thực hiện phép chia sau thành 2 cách :
+Cách chia thông thường + Thuật toán Horner
a) x4+7x3+2x2+13x-7 chia cho (x+7)
2) Với GT nào của b thì đa thức :
f(x)=x3+2x2+2x+b chia hết cho x+1
Nguyễn Thanh HằngToshiro KiyoshiAkai Haruma
Mysterious PersonAce LegonaRibi Nkok NgokDƯƠNG PHAN KHÁNH DƯƠNG
Mấy bn ơi!Dùng mk với!
1) Thực hiện phép chia sau thành 2 cách :
+Cách chia thông thường + Thuật toán Horner
a) x4+7x3+2x2+13x-7 chia cho (x+7)
2) Với GT nào của b thì đa thức :
f(x)=x3+2x2+2x+b chia hết cho x+1
mình tưởng thuật toán Horner chỉ để tìm số dư thôi chứ
Dùng tính chất cơ bản của phân thức, hãy điền một đa thức thích hợp vào các ô trống trong dẳng thức sau:
\(\dfrac{-x^{2^{ }}+2xy-y^2}{x+y}=\dfrac{...}{y^2-x^2}\)
Ta có :
\(\dfrac{-x^2+2xy-y^2}{x+y}=\dfrac{-\left(x-y\right)^2}{x+y}=-\dfrac{\left(x-y\right)^2\left(y-x\right)}{\left(x+y\right)\left(y-x\right)}=\dfrac{\left(x-y\right)^3}{\left(x+y\right)\left(y-x\right)}=\dfrac{x^3-3x^2y+3xy^2-y^3}{\left(y^2-x^2\right)}\)
Hãy điền vào ô trống một đa thức thích hợp để được đẳng thức:
a) \(\dfrac{x+5}{3x-2}=\dfrac{...}{x\left(3x-2\right)}\) b) \(\dfrac{2x-1}{4}=\dfrac{\left(2x-1\right)...}{8x+4}\)
c) \(\dfrac{2x\left(...\right)}{x^{2^{ }}-4x+4}=\dfrac{2x}{x-2}\) d) \(\dfrac{5x^2+10x}{\left(x-2\right)}=\dfrac{5x}{x-2}\)
ý mình là vì sao được kết quả đó , giải thích ra giúp mình nha