Ta có: \(\dfrac{n^4+3n^3+2n^2+6n-2}{n^2+2}\)
\(=\dfrac{\left(n^4+2n^2\right)+\left(3n^3+6n\right)-2}{n^2+2}\)
\(=\dfrac{n^2\left(n^2+2\right)+3n\left(n^2+2\right)-2}{n^2+2}\)
\(=\dfrac{n^2\left(n^2+2\right)+3n\left(n^2+2\right)}{n^2+2}-\dfrac{2}{n^2+2}\)
Ta thấy: \(n^2\left(n^2+2\right)⋮n^2+2;3n\left(n^2+2\right)⋮n^2+2\)
\(\Rightarrow n^2\left(n^2+2\right)+3n\left(n^2+2\right)⋮n^2+2\)
\(\dfrac{2}{n^2+2}=\dfrac{4}{2n^2+4}=\dfrac{4}{2\left(n^2+2\right)}\)
do \(4⋮2\Rightarrow4⋮2\left(n^2+2\right)\) (đoạn này mk ko chắc chắn cho lắm ~.~)
Khi đó: \(n^2\left(n^2+2\right)+3n\left(n^2+2\right)-2⋮n^2+2\)
-> ĐPCM.