Lời giải:
Ta có:
\(n^7+n^2+1=n^7-n+n+n^2+1=n(n^6-1)+n^2+n+1\)
\(=n(n^3-1)(n^3+1)+n^2+n+1\)
\(=n(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)
\(=(n^2+n+1)[n(n-1)(n^3+1)+1]\)
\(=(n^2+n+1)(n^5-n^4+n^2-n+1)\)
Và:
\(n^8+n+1=n^8-n^2+n^2+n+1\)
\(=n^2(n^6-1)+(n^2+n+1)\)
\(=n^2(n^3-1)(n^3+1)+(n^2+n+1)=n^2(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)
\(=(n^2+n+1)(n^6-n^5+n^3-n^2+1)\)
Như vậy giữa $n^7+n^2+1$ và $n^8+n+1$ đều có ước chung là $n^2+n+1\neq \pm 1$ với mọi $n\neq 0;-1$ và nguyên nên phân số đã cho không tối giản.
Lời giải:
Ta có:
\(n^7+n^2+1=n^7-n+n+n^2+1=n(n^6-1)+n^2+n+1\)
\(=n(n^3-1)(n^3+1)+n^2+n+1\)
\(=n(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)
\(=(n^2+n+1)[n(n-1)(n^3+1)+1]\)
\(=(n^2+n+1)(n^5-n^4+n^2-n+1)\)
Và:
\(n^8+n+1=n^8-n^2+n^2+n+1\)
\(=n^2(n^6-1)+(n^2+n+1)\)
\(=n^2(n^3-1)(n^3+1)+(n^2+n+1)=n^2(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)
\(=(n^2+n+1)(n^6-n^5+n^3-n^2+1)\)
Như vậy giữa $n^7+n^2+1$ và $n^8+n+1$ đều có ước chung là $n^2+n+1\neq \pm 1$ với mọi $n\neq 0;-1$ và nguyên nên phân số đã cho không tối giản.