Bài 2: Tính chất cơ bản của phân thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
__HeNry__

rút gọn phân thức sau đây :

a) \(\dfrac{x^4-3x^2+1}{x^4-x^2-2x-1}\)

b) \(\dfrac{x^3+y^3+z^3-3xyz}{x^2+y^2+z^2-xy-yz-zx}\)

Akai Haruma
1 tháng 12 2018 lúc 0:33

Lời giải:
a)

\(\frac{x^4-3x^2+1}{x^4-x^2-2x-1}=\frac{(x^4-2x^2+1)-x^2}{(x^4-x)-(x^2+x+1)}=\frac{(x^2-1)^2-x^2}{x(x^3-1)-(x^2+x+1)}\)

\(=\frac{(x^2-1-x)(x^2-1+x)}{x(x-1)(x^2+x+1)-(x^2+x+1)}=\frac{(x^2-1-x)(x^2-1+x)}{(x^2+x+1)(x^2-x-1)}=\frac{x^2+x-1}{x^2+x+1}\)

\(=\frac{x^2+x+1-2}{x^2+x+1}=1-\frac{2}{x^2+x+1}\)

b)

Xét tử số:

\(x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz\)

\(=[(x+y)^3+z^3]-3xy(x+y+z)\)

\(=(x+y+z)[(x+y)^2-(x+y)z+z^2]-3xy(x+y+z)\)

\(=(x+y+z)[(x+y)^2-(x+y)z+z^2-3xy]\)

\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)

Do đó:

\(\frac{x^3+y^3+z^3-3xyz}{x^2+y^2+z^2-xy-yz-xz}=\frac{(x+y+z)(x^2+y^2+z^2-xy-yz-xz)}{x^2+y^2+z^2-xy-yz-xz}=x+y+z\)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
tràn thị trúc oanh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Công Tuyến
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Ling Ling
Xem chi tiết
quynh nhu nguyen
Xem chi tiết