Lời giải:
a)
\(\frac{x^4-3x^2+1}{x^4-x^2-2x-1}=\frac{(x^4-2x^2+1)-x^2}{(x^4-x)-(x^2+x+1)}=\frac{(x^2-1)^2-x^2}{x(x^3-1)-(x^2+x+1)}\)
\(=\frac{(x^2-1-x)(x^2-1+x)}{x(x-1)(x^2+x+1)-(x^2+x+1)}=\frac{(x^2-1-x)(x^2-1+x)}{(x^2+x+1)(x^2-x-1)}=\frac{x^2+x-1}{x^2+x+1}\)
\(=\frac{x^2+x+1-2}{x^2+x+1}=1-\frac{2}{x^2+x+1}\)
b)
Xét tử số:
\(x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz\)
\(=[(x+y)^3+z^3]-3xy(x+y+z)\)
\(=(x+y+z)[(x+y)^2-(x+y)z+z^2]-3xy(x+y+z)\)
\(=(x+y+z)[(x+y)^2-(x+y)z+z^2-3xy]\)
\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)
Do đó:
\(\frac{x^3+y^3+z^3-3xyz}{x^2+y^2+z^2-xy-yz-xz}=\frac{(x+y+z)(x^2+y^2+z^2-xy-yz-xz)}{x^2+y^2+z^2-xy-yz-xz}=x+y+z\)