Very easy !!
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(a^2+b^2+1\right)\left(1+1+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow\dfrac{1}{a^2+b^2+1}\le\dfrac{c^2+2}{\left(a+b+c\right)^2}\). Tương tự ta cũng có:
\(\dfrac{1}{1+b^2+c^2}\le\dfrac{a^2}{\left(a+b+c\right)^2};\dfrac{1}{1+c^2+a^2}\le\dfrac{b^2}{\left(a+b+c\right)^2}\)
Cộng theo vế 3 BĐT trên ta có:
\(T=\dfrac{1}{1+a^2+b^2}+\dfrac{1}{1+b^2+c^2}+\dfrac{1}{1+c^2+a^2}\le\dfrac{6+a^2+b^2+c^2}{\left(a+b+c\right)^2}\)
Lại có \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\ge6+a^2+b^2+c^2\) ( do \(ab+bc+ca=3\) )
\(\Rightarrow T\le\dfrac{6+a^2+b^2+c^2}{\left(a+b+c\right)^2}\le\dfrac{6+a^2+b^2+c^2}{6+a^2+b^2+c^2}=1\)
Đẳng thức xảy ra khi \(a=b=c=1\)