tính giới hạn của dãy số un \(\frac{2^3-1}{2^3+1}.\frac{3^3-1}{3^3+}....\frac{n^3-1}{n^3+1}\)
Tính giới hạn của dãy số\(Un=\frac{1}{2\sqrt{1}+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
Lời giải:
Xét hạng tử tổng quát:
\(\frac{1}{(n+1)\sqrt{n}+n\sqrt{n+1}}=\frac{(n+1)-n}{\sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1)}}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Cho $n=1,2,...$ thì:
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}=1-\frac{1}{\sqrt{2}}\)
\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
......
\(\frac{1}{(n+1)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
\(\Rightarrow U_n=1-\frac{1}{\sqrt{n+1}}\)
\(\Rightarrow \lim\limits U_n=\lim (1-\frac{1}{\sqrt{n+1}})=1\)
Giới hạn vô cực
1.Tìm lim\(\frac{\sqrt{4n^2+n-1}+n}{\sqrt{n^4_{ }2n^3-1}-n}\)
2. Tìm lim \(\left(-2n^2+4\right)^3\)
3. Cho dãy số (un): \(\left\{{}\begin{matrix}u1=-1\\un+1=un+3\end{matrix}\right.\)
Tính : lim\(\frac{un}{5n+2020}\)
4. Cho dãy số (un):
\(\left\{{}\begin{matrix}un=1\\un+1=\frac{1}{2}\end{matrix}\right.un+\frac{3}{2}\). Tìm giới hạn dã số (un)
5. Cho dãy số (un):
\(\left\{{}\begin{matrix}u1=2\\un+1=un+\frac{1}{2^n}\end{matrix}\right.\)
Tìm lim(un-2)
1. Bạn ghi lại đề, mẫu số ko rõ
2. \(=lim\left[-8n^6\left(1-\frac{4}{n^2}\right)^3\right]=-\infty.1=-\infty\)
3. Dãy số là CSC với \(\left\{{}\begin{matrix}u_1=-1\\d=3\end{matrix}\right.\) \(\Rightarrow u_n=-1+\left(n-1\right)3=3n-4\)
\(\Rightarrow lim\frac{3n-4}{5n+2020}=lim\frac{3-\frac{4}{n}}{5+\frac{2020}{n}}=\frac{3}{5}\)
4.
\(u_{n+1}=\frac{1}{2}u_n+\frac{3}{2}\Rightarrow u_{n+1}-3=\frac{1}{2}\left(u_n-3\right)\)
Đặt \(v_n=u_n-3\Rightarrow\left\{{}\begin{matrix}v_1=-2\\v_{n+1}=\frac{1}{2}v_n\end{matrix}\right.\)
\(\Rightarrow v_n\) là CSN với công bội \(\frac{1}{2}\Rightarrow v_n=-2.\frac{1}{2^{n-1}}\Rightarrow u_n=v_n+3=-\frac{1}{2^{n-2}}+3\)
\(\Rightarrow lim\left(u_n\right)=lim\left[-\frac{1}{2^{n-2}}+3\right]=3\)
5.
\(u_{n+1}=u_n+\frac{1}{2^n}\Rightarrow u_{n+1}+\frac{2}{2^{n+1}}=u_n+\frac{2}{2^n}\)
Đặt \(v_n=u_n+\frac{2}{2^n}\Rightarrow\left\{{}\begin{matrix}v_1=3\\v_{n+1}=v_n\end{matrix}\right.\)
\(\Rightarrow v_{n+1}=v_n=...=v_1=3\Rightarrow u_n=3-\frac{2}{2^n}\)
\(\Rightarrow u_{n-2}=3-\frac{2}{2^{n-2}}\Rightarrow lim\left(u_{n-2}\right)=lim\left(3-\frac{2}{2^{n-2}}\right)=3\)
Tính \(u_{n-2}\) hay \(u_n-2\) nhỉ? Ko dịch nổi nên đoán đại
Câu 1:
Dãy số (un) với un=\(\dfrac{2^n-5.7^{n+1}}{2^n+7^n}\) có giới hạn bằng:
A, 15
B, -25
C, -35
D, Một kết quả khác
Câu 2:
Dãy số (un) với un=\(\dfrac{3^n-2.5^{n+1}}{2^n+7^n}\) có giới hạn bằng:
A, -10
B, -5
C, 15
D, Một kết quả khác
Câu 3:
Dãy số (un) với un= \(\sqrt[3]{\dfrac{5-8n}{n+3}}\) có giới hạn bằng:
A, -1
B, -2
C, 2
D, -8
1/ \(\lim\limits\dfrac{\dfrac{2^n}{7^n}-5.7.\left(\dfrac{7}{7}\right)^n}{\dfrac{2^n}{7^n}+\left(\dfrac{7}{7}\right)^n}=-35\)
2/ \(\lim\limits\dfrac{\dfrac{3^n}{7^n}-2.5.\left(\dfrac{5}{7}\right)^n}{\dfrac{2^n}{7^n}+\dfrac{7^n}{7^n}}=0\)
3/ \(\lim\limits\sqrt[3]{\dfrac{\dfrac{5}{n}-\dfrac{8n}{n}}{\dfrac{n}{n}+\dfrac{3}{n}}}=\sqrt[3]{-8}=-2\)
Tính các giới hạn sau:
a) \(\lim \frac{{5n + 1}}{{2n}};\)
b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}};\)
c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}};\)
d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right);\)
e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}};\)
g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}.\)
a) \(\lim \frac{{5n + 1}}{{2n}} = \lim \frac{{5 + \frac{1}{n}}}{2} = \frac{{5 + 0}}{2} = \frac{5}{2}\)
b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}} = \lim \frac{{6 + \frac{8}{n} + \frac{1}{{{n^2}}}}}{{5 + \frac{3}{{{n^2}}}}} = \frac{{6 + 0 + 0}}{{5 + 0}} = \frac{6}{5}\)
c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}} = \lim \frac{{\sqrt {1 + \frac{5}{n} + \frac{3}{{{n^2}}}} }}{{6 + \frac{2}{n}}} = \frac{{\sqrt {1 + 0 + 0} }}{{6 + 0}} = \frac{1}{6}\)
d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right) = \lim 2 - \lim {\left( {\frac{1}{3}} \right)^n} = 2 - 0 = 0\)
e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}} = \lim \frac{{1 + {{\left( {\frac{2}{3}} \right)}^n}}}{4} = \frac{{1 + 0}}{4} = \frac{1}{4}\)
g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}\)
Ta có \(\lim \left( {2 + \frac{1}{n}} \right) = \lim 2 + \lim \frac{1}{n} = 2 + 0 = 2 > 0;\lim {3^n} = + \infty \Rightarrow \lim \frac{{2 + \frac{1}{n}}}{{{3^n}}} = 0\)
Cho dãy số: \(\frac{1}{3};\frac{1}{{{3^2}}};\frac{1}{{{3^3}}};\frac{1}{{{3^4}}};\frac{1}{{{3^5}}};...\). Số hạng tổng quát của dãy số này là:
A. \({u_n} = \frac{1}{3}.\frac{1}{{{3^{n + 1}}}}\).
B. \({u_n} = \frac{1}{{{3^{n + 1}}}}\).
C. \({u_n} = \frac{1}{{{3^n}}}\).
D. \({u_n} = \frac{1}{{{3^{n - 1}}}}\).
Ta thấy dãy số \(\left( {{u_n}} \right)\) là một cấp số nhân có số hạng đầu \({u_1} = \frac{1}{3}\) và công bội \(q = \frac{1}{3}\).
Số hạng tổng quát của dãy số là: \({u_n} = {u_1}.{q^{n - 1}} = \frac{1}{3}.{\left( {\frac{1}{3}} \right)^{n - 1}} = {\left( {\frac{1}{3}} \right)^n} = \frac{1}{{{3^n}}}\).
Chọn C.
Tính tổng của cấp số nhân lùi vô hạn: \(1 + \frac{1}{3} + {\left( {\frac{1}{3}} \right)^2} + ... + {\left( {\frac{1}{3}} \right)^n} + ...\).
Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{1}{3}\) nên
\(1 + \frac{1}{3} + {\left( {\frac{1}{3}} \right)^2} + ... + {\left( {\frac{1}{3}} \right)^n} + ... = \frac{1}{{1 - \frac{1}{3}}} = \frac{3}{2}\).
Tính các giới hạn sau:
a) \(\lim \frac{{2{n^2} + 6n + 1}}{{8{n^2} + 5}}\)
b) \(\lim \frac{{4{n^2} - 3n + 1}}{{ - 3{n^3} + 5{n^2} - 2}}\);
c) \(\lim \frac{{\sqrt {4{n^2} - n + 3} }}{{8n - 5}}\);
d) \(\lim \left( {4 - \frac{{{2^{n + 1}}}}{{{3^n}}}} \right)\)
e) \(\lim \frac{{{{4.5}^n} + {2^{n + 2}}}}{{{{6.5}^n}}}\)
g) \(\lim \frac{{2 + \frac{4}{{{n^3}}}}}{{{6^n}}}\).
a) \(\lim \frac{{2{n^2} + 6n + 1}}{{8{n^2} + 5}} = \lim \frac{{{n^2}\left( {2 + \frac{6}{n} + \frac{1}{{{n^2}}}} \right)}}{{{n^2}\left( {8 + \frac{5}{{{n^2}}}} \right)}} = \lim \frac{{2 + \frac{6}{n} + \frac{1}{n}}}{{8 + \frac{5}{n}}} = \frac{2}{8} = \frac{1}{4}\)
b) \(\lim \frac{{4{n^2} - 3n + 1}}{{ - 3{n^3} + 6{n^2} - 2}} = \lim \frac{{{n^3}\left( {\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( { - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}} \right)}} = \lim \frac{{\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{ - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}}} = \frac{{0 - 0 + 0}}{{ - 3 + 0 - 0}} = 0\).
c) \(\lim \frac{{\sqrt {4{n^2} - n + 3} }}{{8n - 5}} = \lim \frac{{n\sqrt {4 - \frac{1}{n} + \frac{3}{{{n^2}}}} }}{{n\left( {8 - \frac{5}{n}} \right)}} = \frac{{\sqrt {4 - 0 + 0} }}{{8 - 0}} = \frac{2}{8} = \frac{1}{4}\).
d) \(\lim \left( {4 - \frac{{{2^{{\rm{n}} + 1}}}}{{{3^{\rm{n}}}}}} \right) = \lim \left( {4 - 2 \cdot {{\left( {\frac{2}{3}} \right)}^{\rm{n}}}} \right) = 4 - 2.0 = 4\).
e) \(\lim \frac{{{{4.5}^{\rm{n}}} + {2^{{\rm{n}} + 2}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{{4.5}^{\rm{n}}} + {2^2}{{.2}^{\rm{n}}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{5^n}.\left[ {4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}} \right]}}{{{{6.5}^n}}} = \lim \frac{{4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}}}{6} = \frac{{4 + 4.0}}{6} = \frac{2}{3}\).
g) \(\lim \frac{{2 + \frac{4}{{{n^3}}}}}{{{6^{\rm{n}}}}} = \lim \left( {2 + \frac{4}{{{{\rm{n}}^3}}}} \right).\lim {\left( {\frac{1}{6}} \right)^{\rm{n}}} = \left( {2 + 0} \right).0 = 0\).
Ở trên ta đã biết \(\lim \left( {3 + \frac{1}{{{n^2}}}} \right) = \lim \frac{{3{n^2} + 1}}{{{n^2}}} = 3\).
a) Tìm các giới hạn \(\lim 3\) và \(\lim \frac{1}{{{n^2}}}\).
b) Từ đó, nêu nhận xét về \(\lim \left( {3 + \frac{1}{{{n^2}}}} \right)\) và \(\lim 3 + \lim \frac{1}{{{n^2}}}\).
a) \(\lim\limits3=3\) vì \(3\) là hằng số.
Áp dụng giới hạn cơ bản với \(k=2\), ta có:\(\lim\limits\dfrac{1}{n^2}=0\).
b) \(\lim\limits\left(3+\dfrac{1}{n^2}\right)=\lim\limits3+\lim\limits\dfrac{1}{n^2}=3\).
Cho dãy số (Un) xác định bởi: { U1=1; Un+1=1/2un + 3/2; ∀n ϵ N*
Tình giới hạn của dãy số (Un)
Ai đó giúp em với, em cảm ơn rất nhiều ạ