Chứng minh rằng: \(x^2-2\sqrt{2}x+2>=0\) với mọi x
Chứng minh rằng: \(x\)2 - \(\sqrt{x}\) + \(\dfrac{1}{2}\) > 0 với mọi giá trị \(x\) không âm.
\(x^2-\sqrt{x}+\dfrac{1}{2}\)
\(=x^2-x+\dfrac{1}{4}+x-\sqrt{x}+\dfrac{1}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\\sqrt{x}-\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\) vô nghiệm
Vậy \(x^2-\sqrt{x}+\dfrac{1}{2}>0\forall x\ge0\)
P=[\(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\)] :\(\dfrac{\sqrt{x}-1}{2}\)
a)Rút gọn biểu thức trên
b)Chứng minh rằng P > 0 với mọi x≥ 0 và x ≠ 1.
a: \(P=\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{2\sqrt{x}}{x\sqrt{x}-1}\)
a, Với x ≥ 0, x ≠1
P= [ \(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\)] : \(\dfrac{\sqrt{x}-1}{2}\) =
\(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)]
: \(\dfrac{\sqrt{x}-1}{2}\)
P= \(\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\):\(\dfrac{\sqrt{x}-1}{2}\)
P= \(\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-1}{2}\)
P= \(\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)
P= \(\dfrac{2}{x+\sqrt{x}+1}\)
b, Ta có : \(x+\sqrt{x}+1=\left(\sqrt{x}\right)^2+2.\dfrac{1}{2}.\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}\)= (\(\sqrt{x}+\dfrac{1}{2}\))2 +\(\dfrac{3}{4}\) >\(0\) ∀ x
=> \(\dfrac{3}{x+\sqrt{x}+1}>0\) ∀ x
=> P > 0 với mọi x ≥ 0 và x ≠ 1
Với mọi x, y, z >= 0 . Chứng minh rằng
\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\)
Áp dụng bất đẳng thức Mincopski
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
Chứng minh rằng : \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)
\(\Leftrightarrow\frac{\left(x+y+z\right)^2+9}{x+y+z}\ge6\)
\(\Leftrightarrow x+y+z+\frac{9}{x+y+z}\ge6\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x+y+z+\frac{9}{x+y+z}\ge2\sqrt{\frac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\left(đpcm\right)\)
Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
Mà \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(x=y=z=1\)
Chúc bạn học tốt !!!
Với mọi x, y, z >= 0 . Chứng minh rằng
\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\)
Áp dụng bất đẳng thức Mincopski
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
Chứng minh rằng : \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)
\(\Leftrightarrow x+y+z+\frac{9}{x+y+z}\ge6\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x+y+z+\frac{9}{x+y+z}\ge2\sqrt{\frac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\left(đpcm\right)\)
Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
Mà \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(x=y=z=1\)
Chúc bạn học tốt !!!
Chị xem cách giải của em tại:
Câu hỏi của Nhã Doanh - Toán lớp 9 | Học trực tuyến
(https://h o c 2 4 .vn/hoi-dap/question/680384.html). Do không biết ad đã fix lỗi không gửi được link \(\text{H}\)(h.vn) nên em phải đính kèm link-_-
Với mọi x, y, z >= 0 . Chứng minh rằng
\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\)
Áp dụng bất đẳng thức Mincopski
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
Chứng minh rằng \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)
\(\Leftrightarrow\dfrac{\left(x+y+z\right)^2+9}{x+y+z}\ge6\)
\(\Leftrightarrow x+y+z+\dfrac{9}{x+y+z}\ge6\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x+y+z+\dfrac{9}{x+y+z}\ge2\sqrt{\dfrac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\) ( đpcm )
Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
Mà \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\) ( đpcm )
Dấu " = " xảy ra khi \(x=y=z=1\)
a ) Chứng minh rằng : A = x2 - 2x + 2 > 0 với mọi x thuộc R
b ) Chứng minh rằng x - x2 - 3 < 0 với mọi x thuộc R
a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)
b) \(x-x^2-3=-\left(x^2-x+3\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)
x²-2x+2=(x²-2x+1)+1=( x-1)²+1
Mà (x-1)²≥0 với mọi x
=> (x-1)²+1>0 với mọi x
=> x²-2x+2>0 với mọi x
a, Chứng minh rằng: |a+b| ≤ \(\sqrt{2\left(a^2+b^2\right)}\) với mọi a, b
b, Tìm x biết: \(\left(\sqrt{x}+\frac{1}{\sqrt{x}+1}\right)\left(1-\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\) > 0
a) \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Rightarrow\sqrt{2\left(a^2+b^2\right)}\ge\sqrt{\left(a+b\right)^2}=\left|a+b\right|\)
Dấu "=" \(\Leftrightarrow a=b\)
bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html
Chứng minh rằng
x^2 + 2x + 2 > 0 với mọi x
-x^2 + 4x - 4 < 0 với mọi x
x^2 + 2x + 2 = x^2 + 2.x.1 + 1^2 +1 = (x + 1)^2 + 1 > 0
-x^2 + 4x - 4 = -(x^2 - 2.x.2 + 2^2) = -(x - 2)^2 <= 0
a) ta co ; x^2+ 2x+ 2= (x2+2x+1)+1=(x+1)2+1>0
vi (x+1)2>hoặc=0;1>0suy ra x^2+ 2x+ 2>0
b)ta co -x2+4x-4=-(x2-4x+4)=-(x-2)2<0
a) x^2 + 2x + 2 = ( x^2 + 2x +1 ) + 1 =( x + 1)^2 +1 >0 với mọi x
b) -x^2 + 4x - 4 = -( x^2 -4x + 4 ) = - ( x - 2)^2 ≤ 0 với mọi x
Cho biểu thức : \(B=(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}):\dfrac{\sqrt{x}-1}{2}\)
a, Rút gọn biểu thức B
b, Chứng minh rằng: B > 0 với mọi x > 0 và x khác 1
a. \(B=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\\ =\left(\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-1\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}-1}{2}\\ =\dfrac{\left(\sqrt{x}-1\right)^2.2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{2}{x+\sqrt{x}+1}\)
b.Ta có:
\(B=\dfrac{2}{x+\sqrt{x}+1}\). Mà \(\left[{}\begin{matrix}2>0\\x+\sqrt{x}+1=\left[\left(\sqrt{x}\right)^2+2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}\right]+\dfrac{3}{4}>0\end{matrix}\right.\)
Vậy B>0 \(\forall x\)