Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Thúy Vy

Với mọi x, y, z >= 0 . Chứng minh rằng

\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\)

Kuro Kazuya
21 tháng 4 2017 lúc 18:59

Áp dụng bất đẳng thức Mincopski

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

Chứng minh rằng \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)

\(\Leftrightarrow\dfrac{\left(x+y+z\right)^2+9}{x+y+z}\ge6\)

\(\Leftrightarrow x+y+z+\dfrac{9}{x+y+z}\ge6\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow x+y+z+\dfrac{9}{x+y+z}\ge2\sqrt{\dfrac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\) ( đpcm )

Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\) ( đpcm )

Dấu " = " xảy ra khi \(x=y=z=1\)


Các câu hỏi tương tự
Lê Trường Lân
Xem chi tiết
Trúc Giang
Xem chi tiết
Vũ Đình Thái
Xem chi tiết
阮芳邵族
Xem chi tiết
Neet
Xem chi tiết
Hàn Băng Di
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Fidget Spinner
Xem chi tiết
duy Nguyễn
Xem chi tiết