Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thuy Chu
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 19:23

1: =>x^2-x=3-x

=>x^2=3

=>x=căn 3 hoặc x=-căn 3

2: =>x^2-4x+3=x^2-4x+4 và x>=2

=>3=4(vô lý)

3: =>2|x-1|=6

=>|x-1|=3

=>x-1=3 hoặc x-1=-3

=>x=-2 hoặc x=4

4: =>|2x-3|=|x-2|

=>2x-3=x-2 hoặc 2x-3=-x+2

=>x=1 hoặc x=5/3

5: =>\(\sqrt{x+2}\left(\sqrt{x-2}+\sqrt{x+2}\right)=0\)

=>x+2=0

=>x=-2

Mai Tiến Đỗ
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 12 2020 lúc 16:58

a.

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
13 tháng 12 2020 lúc 16:58

b.

ĐKXĐ: \(x\ge-1\)

\(x^2-6x+9+x+1-4\sqrt{x+1}+4=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)

\(\Leftrightarrow x=3\)

c.

ĐKXĐ: \(-2\le x\le\dfrac{4}{5}\)

\(VT=2x+3\sqrt{4-5x}+1.\sqrt{x+2}\)

\(VT\le2x+\dfrac{1}{2}\left(9+4-5x\right)+\dfrac{1}{2}\left(1+x+2\right)=8\)

Dấu "=" xảy ra khi và chỉ khi \(x=-1\)

Nguyễn Việt Lâm
13 tháng 12 2020 lúc 16:58

d.

ĐKXĐ: \(x>1\)

\(\Leftrightarrow\dfrac{x^2+x+1-1}{\sqrt{x^2+x+1}}=\dfrac{1-\left(x-1\right)}{\sqrt{x-1}}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{x-1}=b>0\end{matrix}\right.\)

\(\Rightarrow\dfrac{a^2-1}{a}=\dfrac{1-b^2}{b}\)

\(\Leftrightarrow a-\dfrac{1}{a}=\dfrac{1}{b}-b\)

\(\Leftrightarrow a+b-\dfrac{a+b}{ab}=0\)

\(\Leftrightarrow\left(a+b\right)\left(1-\dfrac{1}{ab}\right)=0\)

\(\Leftrightarrow1-\dfrac{1}{ab}=0\)

\(\Leftrightarrow ab=1\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=1\)

\(\Leftrightarrow x^3-1=1\)

\(\Leftrightarrow x=\sqrt[3]{2}\)

Nguyễn Hoàng trung
Xem chi tiết
Lê Thị Thục Hiền
23 tháng 6 2021 lúc 12:58

a) Áp dụng bđt AM-GM có:

\(\sqrt[3]{\left(9-x\right).8.8}\le\dfrac{9-x+8+8}{3}=\dfrac{25-x}{3}\)\(\Leftrightarrow\sqrt[3]{9-x}\le\dfrac{25-x}{12}\)

\(\sqrt[3]{\left(7+x\right).8.8}\le\dfrac{7+x+8+8}{3}=\dfrac{23+x}{3}\)\(\Leftrightarrow\sqrt[3]{7+x}\le\dfrac{23+x}{12}\)

Cộng vế với vế \(\Rightarrow\sqrt[3]{9-x}+\sqrt[3]{7+x}\le4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}9-x=8\\7+x=8\end{matrix}\right.\)\(\Rightarrow x=1\)

Vậy...

b)Đk:\(x\ge2\)

Pt \(\Leftrightarrow\left(x-1\right)^2.\left(x^2-4\right)=\left(x-2\right)^2.\left(x^2-1\right)\)

\(\Leftrightarrow\left(x-1\right)^2\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\left(x-1\right)\)

Do \(x\ge2\Rightarrow x-1>0\)

Chia cả hai vế của pt cho x-1 ta được:

\(\left(x-1\right)\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x-1\right)\left(x+2\right)-\left(x-2\right)\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2+x-2-x^2+3x-2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)

Vậy S={2}

c)Đk:\(\left\{{}\begin{matrix}9-x^2\ge0\\x^2-1\ge0\\x-3\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le3\\\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Rightarrow x=3\)

Thay x=3 vào pt thấy thỏa mãn

Vậy S={3}

Nhan Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 7 2021 lúc 21:44

a) ĐKXĐ: \(x\ge0\)

Ta có: \(\left(x+3\sqrt{x}+2\right)\left(x+9\sqrt{x}+18\right)=168x\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+6\right)=168x\)

\(\Leftrightarrow\left(x+6\right)^2+12\sqrt{x}\left(x+6\right)-133=0\)

\(\Leftrightarrow\left(x+6\right)^2+19\sqrt{x}\left(x+6\right)-7\sqrt{x}\left(x+6\right)-133=0\)

\(\Leftrightarrow\left(x+6\right)\left(x+19\sqrt{x}+6\right)-7\sqrt{x}\left(x+19\sqrt{x}+6\right)=0\)

\(\Leftrightarrow\left(x-7\sqrt{x}+6\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=36\end{matrix}\right.\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 22:18

a/ ĐKXĐ: \(x\ge-1\)

\(2\sqrt{\left(\sqrt{x+1}+1\right)^2}-\sqrt{x+1}=4\)

\(\Leftrightarrow2\left(\sqrt{x+1}+1\right)-\sqrt{x+1}=4\)

\(\Leftrightarrow\sqrt{x+1}=2\)

\(\Rightarrow x=3\)

b/ ĐKXĐ: \(x\ge1\)

\(\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(2-\sqrt{x-1}\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|+\left|2-\sqrt{x-1}\right|=1\)

Ta có \(VT\ge\left|\sqrt{x-1}-1+2-\sqrt{x-1}\right|=1\)

Nên dấu "=" xảy ra khi và chỉ khi:

\(1\le\sqrt{x-1}\le2\Rightarrow2\le x\le5\)

Vậy nghiệm của pt là \(2\le x\le5\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 22:28

c/ ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)

- Với \(\sqrt{x-1}\ge1\Rightarrow x\ge2\) ta có:

\(\sqrt{x-1}+1-\sqrt{x-1}+1=2\)

\(\Leftrightarrow2=2\) (luôn đúng)

- Với \(1\le x< 2\) ta có:

\(\sqrt{x-1}+1-1+\sqrt{x-1}=2\)

\(\Leftrightarrow\sqrt{x-1}=1\Rightarrow x=2\left(l\right)\)

Vậy nghiệm của pt là \(x\ge2\)

d/ ĐKXĐ: \(-\le x\le1\)

\(\Leftrightarrow\sqrt{5-4x^2+4\sqrt{1-x^2}}+\sqrt{5-4x^2-4\sqrt{1-x^2}}=2x+2\)

\(\Leftrightarrow\sqrt{4-4x^2+2\sqrt{4-4x^2}+1}+\sqrt{4-4x^2-2\sqrt{4-4x^2}+1}=2x+2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{4-4x^2}+1\right)^2}+\sqrt{\left(\sqrt{4-4x^2}-1\right)^2}=2x+2\)

\(\Leftrightarrow\left|\sqrt{4-4x^2}+1\right|+\left|\sqrt{4-4x^2}-1\right|=2x+2\)

TH1: \(\sqrt{4-4x^2}\ge1\Rightarrow-\frac{\sqrt{3}}{2}\le x\le\frac{\sqrt{3}}{2}\) ta có:

\(\sqrt{4-4x^2}+1+\sqrt{4-4x^2}-1=2x+2\)

\(\Leftrightarrow\sqrt{4-4x^2}=x+1\)

\(\Leftrightarrow4-4x^2=x^2+2x+1\)

\(\Leftrightarrow5x^2+2x-3=0\Rightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\x=\frac{3}{5}\end{matrix}\right.\)

TH2: \(\left[{}\begin{matrix}-1\le x< -\frac{\sqrt{3}}{2}\\\frac{\sqrt{3}}{2}< x\le1\end{matrix}\right.\) ta có:

\(\sqrt{4-4x^2}+1+1-\sqrt{4-4x^2}=2x+2\)

\(\Leftrightarrow2x=0\Rightarrow x=0\left(l\right)\)

Vậy pt có nghiệm duy nhất \(x=\frac{3}{5}\)

Khách vãng lai đã xóa
Quân
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 3 2021 lúc 18:02

1. ĐKXĐ:...

\(8-2x-\dfrac{2}{x}-2\sqrt{2-x^2}-2\sqrt{2-\dfrac{1}{x^2}}=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(\dfrac{1}{x^2}-\dfrac{2}{x}+1\right)+\left(2-x^2-2\sqrt{2-x^2}+1\right)+\left(2-\dfrac{1}{x^2}-2\sqrt{2-\dfrac{1}{x^2}}+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\dfrac{1}{x}-1\right)^2+\left(\sqrt{2-x^2}-1\right)^2+\left(\sqrt{2-\dfrac{1}{x^2}}-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\dfrac{1}{x}-1=0\\\sqrt{2-x^2}-1=0\\\sqrt{2-\dfrac{1}{x^2}}-1=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

Nguyễn Việt Lâm
2 tháng 3 2021 lúc 18:02

2.

ĐKXĐ:...

Ta có:

\(VT=x\sqrt{x}+1.\sqrt{12-x}\le\sqrt{\left(x^2+1\right)\left(x+12-x\right)}=2\sqrt{3\left(x^2+1\right)}\)

Dấu "=" xảy ra khi và chỉ khi: \(x\sqrt{12-x}=\sqrt{x}\)

\(\Leftrightarrow x^3-12x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=6-\sqrt{35}\\x=6+\sqrt{35}\end{matrix}\right.\)

Nguyễn Việt Lâm
2 tháng 3 2021 lúc 18:06

3. ĐKXĐ: ...

Với \(x=0\) ko phải nghiệm

Với \(x>0\) pt tương đương:

\(\left(\dfrac{x+8\sqrt{x}+4}{\sqrt{x}}\right)\left(\dfrac{x-\sqrt{x}+4}{\sqrt{x}}\right)=36\)

\(\Leftrightarrow\left(\sqrt{x}+\dfrac{4}{\sqrt{x}}+8\right)\left(\sqrt{x}+\dfrac{4}{\sqrt{x}}-1\right)=36\)

Đặt \(\sqrt{x}+\dfrac{4}{\sqrt{x}}-1=t\ge3\)

\(t\left(t+9\right)=36\Leftrightarrow t^2+9t-36=0\)

\(\Rightarrow\left[{}\begin{matrix}t=3\\t=-12\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\dfrac{4}{\sqrt{x}}-1=3\)

\(\Leftrightarrow x-4\sqrt{x}+4=0\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)

\(\Leftrightarrow x=4\)

Nguyễn Trung Hiếu
Xem chi tiết
alibaba nguyễn
13 tháng 11 2016 lúc 15:08

6/ Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{2-x}=b\end{cases}}\)

\(\Rightarrow b^4+a^4=2\)

Từ đó ta có: a + b = 2

Ta có: \(a^4+b^2\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}=\frac{16}{8}=2\)

Dấu = xảy ra khi a = b = 1

=> x = 1

Tuấn Hùng
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2021 lúc 23:54

4) Ta có: \(\left(x+3\right)\cdot\sqrt{10-x^2}=x^2-x-12\)

\(\Leftrightarrow\left(x+3\right)\cdot\sqrt{10-x^2}-\left(x-4\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(\sqrt{10-x^2}-x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\sqrt{10-x^2}=x-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\10-x^2=x^2-8x+16\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x^2-8x+16-10+x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\2x^2-8x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\2\left(x^2-4x+3\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\\left(x-1\right)\left(x-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=3\end{matrix}\right.\)

Mai Huyền My
Xem chi tiết
Phuonganh Nhu
Xem chi tiết
Lấp La Lấp Lánh
23 tháng 8 2021 lúc 13:20

d) \(\sqrt{x^2-6x+9}=2\Leftrightarrow\sqrt{\left(x-3\right)^2}=2\Leftrightarrow x-3=2\Leftrightarrow x=5\)

e) đk: \(x\ge2\)\(\sqrt{x^2-3x+2}=\sqrt{x-1}\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)f) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-3\right)^2}\Leftrightarrow2x-1=x-3\Leftrightarrow x=-2\)

Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 13:29

c: Ta có: \(\sqrt{x+4\sqrt{x-4}}=2\)

\(\Leftrightarrow\left|\sqrt{x-4}+2\right|=2\)

\(\Leftrightarrow x-4=0\)

hay x=4

Nguyễn Minh Trang
22 tháng 9 2021 lúc 20:16

a) \(\sqrt{x-1+2\sqrt{x-1}.1+1^2}=2;đk:x\)≥1
\(\sqrt{\left(\sqrt{x-1}\right)^2+2\sqrt{x-1}.1+1^2}=2\left(hđt-1\right)\)
\(\sqrt{\left(\sqrt{x-1}+1\right)^2=2}\)
⇔|\(\sqrt{x-1}+1\)|=2
\(\left[{}\begin{matrix}\sqrt{x+1}-1=2\\\sqrt{x+1-1}=-2\end{matrix}\right.\)\(\left[{}\begin{matrix}\sqrt{x+1}=3\\\sqrt{x+1}=-1\left(L\right)\end{matrix}\right.\)⇔x+1=9⇔x=10(TM)
→S={10}