sinx.cosx. cos2x.cos8x = 1/4 sin 12x
Giải phương trình:
1.\(cos^3x.cos3x+sin^3x.sin3x=\frac{\sqrt{2}}{4}\)
2.\(cos^34x=cos^3x.cos3x+sin^3x.sin3x\)
3.\(cos^2x-4sin^2\left(\frac{x}{2}-\frac{\pi}{4}\right)+2=0\)
4.\(sin^4x+sin^4\left(x+\frac{\pi}{4}\right)=\frac{1}{4}\)
5.\(sin^6x+cos^6x=\frac{5}{6}\left(sin^4x+cos^4x\right)\)
6.\(sin^6x+cos^6x+\frac{1}{2}sinx.cosx=0\)
7.\(\frac{1}{2}\left(sin^4x+cos^4x\right)=sin^2x.cos^2x+sinx.cosx\)
8.\(sin^6x+cos^6x-3cos8x+2=0\)
9.\(sin^4x+cos^4x-2\left(sin^6\frac{x}{2}+cos^6\frac{x}{2}\right)+1=0\)
5.
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\frac{5}{6}\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)
\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)
\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)
\(\Leftrightarrow\frac{1}{3}sin^22x=\frac{1}{6}\)
\(\Leftrightarrow sin^22x=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\frac{\sqrt{2}}{2}\\sin2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=\frac{3\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\\x=\frac{5\pi}{8}+k\pi\end{matrix}\right.\)
6.
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+\frac{1}{2}sinx.cosx=0\)
\(\Leftrightarrow1-3sin^2x.cos^2x+\frac{1}{2}sinx.cosx=0\)
\(\Leftrightarrow1-\frac{3}{4}sin^22x+\frac{1}{4}sin2x=0\)
\(\Leftrightarrow-3sin^22x+sin2x+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\frac{4}{3}>1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2x=-\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)
1.
\(\Rightarrow4cos^3x.cos3x+4sin^3x.sin3x=\sqrt{2}\)
\(\Leftrightarrow\left(3cosx+cos3x\right)cos3x+\left(3sinx-sin3x\right)sin3x=\sqrt{2}\)
\(\Leftrightarrow3\left(cos3x.cosx+sin3x.sinx\right)+cos^23x-sin^23x=\sqrt{2}\)
\(\Leftrightarrow3cos2x+cos6x=\sqrt{2}\)
\(\Leftrightarrow3cos2x+4cos^32x-3cos2x=\sqrt{2}\)
\(\Leftrightarrow4cos^32x=\sqrt{2}\)
\(\Leftrightarrow cos2x=\frac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{4}+k2\pi\\2x=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\end{matrix}\right.\)
Tìm m để hàm số \(\sqrt{sin^4x+cos^4x+4.sinx.cosx+m-5}\) xác định trên R
Hàm xác định trên R khi và chỉ khi:
\(sin^4x+cos^4x+4sinx.cosx+m-5\ge0;\forall m\)
\(\Leftrightarrow sin^4x+cos^4x+4sinx.cosx-5\ge-m;\forall m\)
\(\Leftrightarrow-m\le\min\limits_{x\in R}f\left(x\right)\)
Với \(f\left(x\right)=sin^4x+cos^4x+4sinx.cosx-5\)
Ta có:
\(f\left(x\right)=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+4sinx.cosx-5\)
\(=-\dfrac{1}{2}\left(2sinx.cosx\right)^2+2sin2x-4\)
\(=-\dfrac{1}{2}sin^22x+2sin2x-4\)
\(=\dfrac{1}{2}\left(-sin^22x+4sin2x+5\right)-\dfrac{13}{2}\)
\(=\dfrac{1}{2}\left(5-sin2x\right)\left(sin2x+1\right)-\dfrac{13}{2}\ge-\dfrac{13}{2}\) do \(-1\le sin2x\le1\)
\(\Rightarrow\min\limits_{x\in R}f\left(x\right)=-\dfrac{13}{2}\Rightarrow m\ge\dfrac{13}{2}\)
\(\frac{cos^2x}{1-tanx}+\frac{sin^2x}{1-cotx}=1-sinx.cosx\)
41, giai pt:
\(\frac{sin^22x+cos^42x+1}{\sqrt{sinx.cosx}}\)
Tính
\(A=sinx.cosx+\frac{sin^2x}{1+cotx}+\frac{cos^2x}{1+tanx}\)
\(A=sinx.cosx+\frac{1-cos^2x}{1+\frac{cosx}{sinx}}+\frac{1-sin^2x}{1+\frac{sinx}{cosx}}\)
\(=sinx.cosx+\frac{\left(sinx-sinx.cosx\right)\left(1+cosx\right)}{1+cosx}+\frac{\left(cosx-sinx.cosx\right)\left(1+sinx\right)}{1+sinx}\)
\(=sinx.cosx+sinx-sinx.cosx+cosx-sinx.cosx\)
\(=sinx+cosx-sinx.cosx\)
Chứng minh đẳng thức
(tan^3x/sin^2x)-(1/sinx.cosx)+ (cot^3x/cos^2x)=tan^3x+cot^3x
\(\frac{tan^3x}{sin^2x}-\frac{1}{sinx.cosx}+\frac{cot^3x}{cos^2x}=tan^3x\left(1+cot^2x\right)-\frac{1}{sinx.cosx}+cot^3x\left(1+tan^2x\right)\)
\(=tan^3x+tanx+cot^3x+cotx-\frac{1}{sinx.cosx}\)
\(=tan^3x+cot^3x+\frac{sinx}{cosx}+\frac{cosx}{sinx}-\frac{1}{sinx.cosx}\)
\(=tan^3x+cot^3x+\frac{sin^2x+cos^2x}{sinx.cosx}-\frac{1}{sinx.cosx}\)
\(=tan^3x+cot^3x\)
Tìm tất cả nghiệm của phương trình : \(sin^2x+\sqrt{3}sinx.cosx=1\) .
\(\Leftrightarrow1-sin^2x-\sqrt{3}sinx.cosx=0\)
\(\Leftrightarrow cos^2x-\sqrt{3}sinx.cosx=0\)
\(\Leftrightarrow cosx\left(cosx-\sqrt{3}sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cotx=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)
Tìm m sao cho: sin^6x + cos^6x + sinx.cosx > m
Giải pt :
\(\sin\frac{\pi}{3}.sin3x-sinx.cosx=0\)
\(\Leftrightarrow\sqrt{3}\sin3x=\sin2x \)
\(\Rightarrow3\sin^23x=\sin^22x\)
\(\Leftrightarrow\frac{3}{2}\left(1-\cos6x\right)=1-\cos^22x\)
\(\Leftrightarrow\frac{3}{2}\left[1-\left(4\cos^32x-3\cos2x\right)\right]=1-\cos^22x\)
đến đây đặt ẩn cos2x rồi giải tiếp nhé cậu ^^
Lời giải:
PT \(\Leftrightarrow \frac{\sqrt{3}}{2}(3\sin x-4\sin ^3x)-\sin x\cos x=0\)
\(\Leftrightarrow \sin x(3\sqrt{3}-4\sin ^2x-2\cos x)=0\)
\(\Leftrightarrow \sin x(3\sqrt{3}-4+4\cos ^2x-2\cos x)=0\)
\(\Rightarrow \left[\begin{matrix} \sin x=0\\ 4\cos ^2-2\cos x+3\sqrt{3}-4=0\end{matrix}\right.\)
Nếu \(\sin x=0\Rightarrow x=k\pi \) với $k$ nguyên bất kỳ
Nếu \(4\cos ^2x-2\cos x+3\sqrt{3}-4=0\)
\(\Leftrightarrow (2\cos x-\frac{1}{2})^2=\frac{17-12\sqrt{3}}{4}< 0\) (vô lý- loại)
Vậy............