Cho \(a\ge6\) Tìm gtnn của \(S=\frac{18}{\sqrt{a}}\)
cho \(a\ge6\). Tìm GTNN của \(S=a^2+\frac{18}{\sqrt{a}}\)
Bài tập sử dụng BĐT Cauchy
B1: Cho số thực \(a\ge6\). Tìm GTNN của biểu thức
\(A=a^2+\frac{18}{a}\)
B2: Cho các thực dương a,b thỏa mãn \(a+b\le1\) . Tìm GTNN của biểu thức
\(A=\frac{1}{1+a^2+b^2}+\frac{1}{2ab}\)
B3: Cho a,b là các số thực dương tùy ý. Tính GTNN của biểu thức
\(A=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)
B1
Ta có
\(A=\frac{a^2}{24}+\frac{9}{a}+\frac{9}{a}+\frac{23a^2}{24}\ge3\sqrt[3]{\frac{a^2}{24}.\frac{9}{a}.\frac{9}{a}+\frac{23a^2}{24}}\ge\frac{9}{2}+\frac{23.36}{24}\ge39\)
Dấu "=" xảy ra <=> a=6
Vậy Min A = 39 <=> a=6
\(A=a^2+\frac{18}{a}=a^2+\frac{216}{a}+\frac{216}{a}-\frac{414}{a}\ge3\sqrt[3]{a^2.\frac{216}{a}.\frac{216}{a}}-69=39\)
Đẳng thức xảy ra khi a = 6
B3: Áp dụng bđt AM-GM
\(A=\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}+\frac{3\left(a+b\right)}{4\sqrt{ab}}\ge2\sqrt{\frac{a+b}{4\sqrt{ab}}.\frac{\sqrt{ab}}{a+b}}+\frac{3\left(a+b\right)}{4\left(\frac{a+b}{2}\right)}\)
\(=1+\frac{3\left(a+b\right)}{2\left(a+b\right)}=1+\frac{3}{2}=\frac{5}{2}\)
Dấu "=" xảy ra khi \(a=b>0\)
Cho a;b là các số thực dương thỏa mãn \(a+b\ge6\).Biết M =\(\frac{8}{3}a+3b+\frac{18}{a}+\frac{21}{b}\).Tìm GTNN của M
\(M=\frac{8}{3}a+3b+\frac{18}{a}+\frac{21}{b}\)
\(M=2a+\frac{18}{a}+\frac{21}{b}+\frac{7}{3}b+\frac{2}{3}\left(a+b\right)\)
\(M\ge12+14+4=30\)
\("="\Leftrightarrow a=b=3\)
Cho \(a;b\)là hai số thực dương thỏa mãn: \(a+b\ge6\).Tìm GTNN của \(B=\frac{8}{3}a+3b+\frac{18}{a}+\frac{21}{b}\)
Sử BĐT Bunhiacopxki giải bài toán sau:
Cho các số thực dương a,b,c thỏa mãn \(a+b+c\ge6\) .Tìm GTNN của biểu thức sau:
\(A=\sqrt{a^2+\frac{1}{b+c}}+\sqrt{b^2+\frac{1}{c+a}}+\sqrt{c^2+\frac{1}{a+b}}\)
\(\left(4+\dfrac{1}{4}\right)\left(a^2+\dfrac{1}{b+c}\right)\ge\left(2a+\dfrac{1}{2\sqrt{b+c}}\right)^2\)
\(\Rightarrow\sqrt{a^2+\dfrac{1}{b+c}}\ge\dfrac{2}{\sqrt{17}}\left(2a+\dfrac{1}{2\sqrt{b+c}}\right)=\dfrac{1}{\sqrt{17}}\left(4a+\dfrac{1}{\sqrt{b+c}}\right)\)
Tương tự:
\(\sqrt{b^2+\dfrac{1}{a+c}}\ge\dfrac{1}{\sqrt{17}}\left(4b+\dfrac{1}{\sqrt{a+c}}\right)\) ; \(\sqrt{c^2+\dfrac{1}{a+b}}\ge\dfrac{1}{\sqrt{17}}\left(4c+\dfrac{1}{\sqrt{a+b}}\right)\)
Cộng vế:
\(VT\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}+\dfrac{1}{\sqrt{c+a}}\right)\)
\(VT\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}}\right)\)
Cũng theo Bunhiacopxki:
\(1.\sqrt{a+b}+1.\sqrt{b+c}+1\sqrt{c+a}\le\sqrt{\left(1+1+1\right)\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\)
\(\Rightarrow VT\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{6\left(a+b+c\right)}}\right)\)
\(VT\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}\left(a+b+c\right)+\dfrac{a+b+c}{8}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}\right)\)
\(VT\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}.6+3\sqrt[3]{\dfrac{81\left(a+b+c\right)}{32.6\left(a+b+c\right)}}\right)=\dfrac{3\sqrt{17}}{2}\)
Dấu "=" xảy ra khi \(a=b=c=2\)
Cho các số thực dương a,b,c thỏa mãn \(a+b+c\ge6\)Tìm GTNN của biểu thức sau:
\(A=\sqrt{a^2+\frac{1}{b+c}}+\sqrt{b^2+\frac{1}{c+a}}+\sqrt{c^2+\frac{1}{a+b}}\)
Mọi người giúp em bằng BĐT Bunhiacopxki với ạ!
Cho \(a;b;c\in N\)*
\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
a) Chứng minh: \(S\ge6\)
b) Tìm GTNN của S
Mn đừng chép bài giải ở CHTT nha vì em chưa học đến, giải = cách lớp 6 thôi ạ.
Ace Legona Rồng Đom Đóm Nguyen Nguyễn Thành Trương Nguyễn Thị Ngọc Thơ Nguyễn Thị Thảo Vy Lê Anh Duy Y Nguyễn Huy Thắng Khôi Bùi ...
Tim GTNN của
1.A=\(a^2+\frac{18}{a^2}với\left(a\ge6\right)\)
2.B=\(2a+\frac{1}{a^2}\) (0\(< \)a\(\le\)\(\frac{1}{2}\))
3.C=\(ab+\frac{1}{ab}\left(a+b\le1\right)\)
4.D=\(\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)
Dự đoán các biểu thức đạt GTLN / GTNN tại các mút hoặc tại các biến bằng nhau.
Việc còn lại là nhóm hợp lý sao cho dấu bằng xảy ra giống như dự đoán,
\(A=a^2+\frac{18}{a^2}=\left(\frac{18}{a^2}+\frac{a^2}{72}\right)+\frac{71a^2}{72}\ge2\sqrt{\frac{18}{a^2}.\frac{a^2}{72}}+\frac{71.6^2}{72}=\frac{73}{2}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}\frac{18}{a^2}=\frac{a^2}{72}\\a=6\end{cases}}\Leftrightarrow a=6\)
\(B=a+a+\frac{1}{8a^2}+\frac{7}{8a^2}\ge3\sqrt[3]{a.a.\frac{1}{8a^2}}+\frac{7}{8.\left(\frac{1}{2}\right)^2}=5\)
Dấu bằng xảy ra khi \(\hept{\begin{cases}a=\frac{1}{8a^2}\\a=\frac{1}{2}\end{cases}}\Leftrightarrow a=\frac{1}{2}\)
c. \(ab\le\frac{\left(a+b\right)^2}{4}\le\frac{1}{4}\), làm tương tự câu a, b
d.
\(t=\frac{a+b}{\sqrt{ab}}\ge\frac{2\sqrt{ab}}{\sqrt{ab}}=2\)
\(D=t+\frac{1}{t}\text{ }\left(t\ge2\right)\), làm tương tự câu a.
Cho a,b>0. tìm GTNN của:
\(S=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)