Chứng minh các biểu thức sau là số chính phương:
a) A= \(\frac{11.....1}{2nso1}-\frac{222....22}{nso2}\)
b) B= \(\frac{11....1}{2nso1}+\frac{44...4}{nso4}+1\)
Chứng minh rằng biểu thức sau là số chính phương:
B=\(\frac{11...1}{n}\)\(\frac{222...2}{n+1}\)5
chứng tỏ các hiệu sau là số chính phương:
A= 111..11 (100 số 1) - 222..222 (50 số 2)
B= 111..11 (50 số 1) - 999..99 (50 số 9)
C= 111..11 (2n chữ số 1) - 22..22 (n chữ số 2)
Tính giá trị của các biểu thức sau:
\(\begin{array}{l}a)\left( {\frac{2}{3} + \frac{1}{6}} \right):\frac{5}{4} + \left( {\frac{1}{4} + \frac{3}{8}} \right):\frac{5}{2}\\b)\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\end{array}\)
\(\begin{array}{l}a)\left( {\frac{2}{3} + \frac{1}{6}} \right):\frac{5}{4} + \left( {\frac{1}{4} + \frac{3}{8}} \right):\frac{5}{2}\\ = \left( {\frac{4}{6} + \frac{1}{6}} \right).\frac{4}{5} + \left( {\frac{2}{8} + \frac{3}{8}} \right).\frac{2}{5}\\ = \frac{5}{6}.\frac{4}{5} + \frac{5}{8}.\frac{2}{5}\\ = \frac{2}{3} + \frac{1}{4}\\ = \frac{8}{{12}} + \frac{3}{{12}}\\ = \frac{{11}}{{12}}\\b)\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\\ = \frac{5}{9}:\left( {\frac{2}{{22}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{4}{{14}}} \right)\\ = \frac{5}{9}:\frac{{ - 3}}{{22}} + \frac{7}{4}.\frac{{ - 3}}{{14}}\\ = \frac{5}{9}.\frac{{ - 22}}{3} + \frac{{ - 3}}{8}\\ = \frac{{ - 110}}{{27}} + \frac{{ - 3}}{8}\\ = \frac{{ - 880}}{{216}} + \frac{{ - 81}}{{216}}\\ = \frac{{ - 961}}{{216}}\end{array}\)
Biến đổi biểu thức sau:
\(\frac{5}{1\cdot6}=\frac{1}{?}+\frac{1}{?}\)
a) Từ đó, tính giá trị biểu thức:
\(A=\frac{1}{1\cdot6}+\frac{1}{6\cdot11}+\frac{1}{11\cdot16}+...+\frac{1}{2017\cdot2022}\)
b) Chứng minh \(B< A\)biết:
\(B=\frac{1}{6^2}+\frac{1}{11^2}+\frac{1}{16^2}+...+\frac{1}{2022^2}\)
a) \(A=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+......+\frac{1}{2017.2022}\)
\(5A=5.\left(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+.....+\frac{1}{2017.2022}\right)\)
\(5A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+......+\frac{5}{2017.2022}\)
\(5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+........+\frac{1}{2017}-\frac{1}{2022}\)
\(5A=1-\frac{1}{2022}\)
\(5A=\frac{2022}{2022}-\frac{1}{2022}\)
\(5A=\frac{2021}{2022}\)
\(A=\frac{2021}{2022}\div5\)
\(A=\frac{20201}{10110}\)
TL:
\(\frac{5}{6}=\frac{1}{2}+\frac{1}{3}\)
@@@@@@@@@@
HT
a) Chứng minh: \(\frac{11}{15}< \frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}< \frac{3}{2}\)
b) Chứng minh: \(3< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)
Mọi người giúp mk vs!!!!!!
Chứng minh rằng biểu thức sau là số chính phương:
E=\(\frac{111...1}{n}\)\(\frac{222...2}{n+1}\)5
Chứng minh \(\frac{11..1}{2nsố1}.\frac{22...2}{nsố2}\)là số chính phương
Các số sau đây, số nào là số chính phương:
a, A=222...24 (50 c/s 2)
b,B=11115556
c, C=99..900..025 (n c/s 9 và n c/s 0)
d, D=44...488...89 (n c/s 4 và n-1 c/s 8)
e,E=111...1 - 22...2 (2n c/s 1 và n c/s 2)
f, F=12 + 22 +.....+ 562
giúp mình với ạ!
Cho các số nguyên a, b, c thỏa mãn\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\)
chứng minh giá trị của biểu thức \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)là số chính phương
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Rightarrow\frac{ab+bc+ca}{abc}=\frac{1}{abc}\Rightarrow ab+bc+ca=1\)
Khi đó: \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left[ab+bc+ca+a^2\right]\left[ab+bc+ca+b^2\right]\left[ab+bc+ca+c^2\right]\)
\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+c\right)+c\left(a+c\right)\right]\)
\(=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)là số chính phương.