Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kinder
Xem chi tiết
Su su
Xem chi tiết
Lightning Farron
2 tháng 10 2016 lúc 8:34

\(2016\sqrt{\left(x+1\right)^2}+2015\sqrt{\left(x-1\right)^2}\)

\(=2016\left|x+1\right|+2015\left|x-1\right|\) (1)

Ta thấy: \(\begin{cases}2016\left|x+1\right|\ge0\\2015\left|x-1\right|\ge0\end{cases}\)

\(\Rightarrow\left(1\right)\ge0\).Mà \(2016\left|x+1\right|+2015\left|x-1\right|\le0\)

\(\Rightarrow\begin{cases}2016\left|x+1\right|=0\\2015\left|x-1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}\left|x+1\right|=0\\\left|x-1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=-1\\x=1\end{cases}\)

Vô nghiệm (vì x ko nhận 2 giá trị khác nhau cùng lúc)

 

soyeon_Tiểubàng giải
2 tháng 10 2016 lúc 8:39

Vì \(\sqrt{\left(x+1\right)^2}\ge0;\sqrt{\left(x-1\right)^2}\ge0\)

=> \(2016.\sqrt{\left(x+1\right)^2}\ge0;2015.\sqrt{\left(x-1\right)^2}\ge0\)

=> \(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}\ge0\)

Mà theo đề bài: \(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}\le0\)

=> \(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}=0\)

=> \(\begin{cases}2016.\sqrt{\left(x+1\right)^2}=0\\2015.\sqrt{\left(x-1\right)^2}=0\end{cases}\)=> \(\begin{cases}\sqrt{\left(x+1\right)^2}=0\\\sqrt{\left(x-1\right)^2}=0\end{cases}\)=> \(\begin{cases}x+1=0\\x-1=0\end{cases}\) => \(\begin{cases}x=-1\\x=1\end{cases}\)

, vô lý vì x không thể cùng lúc nhận 2 giá trị khác nhau

Vậy không tồn tại giá trị của x thỏa mãn đề bài

Nguyễn Quốc Huy
Xem chi tiết
tth_new
12 tháng 4 2019 lúc 9:48

Ây da quên:

\(\left(2t+3\right)\left(t-1\right)^2\le0\)

Xét TH: VT = 0

Ta suy ra \(\orbr{\begin{cases}t=-\frac{3}{2}\left(L\right)\\t=1\left(C\right)\end{cases}}\Leftrightarrow x=2\)

Xet TH2: VT < 0 thì: \(t< -\frac{3}{2}\)

Kết hợp đk suy ra vô nghiệm.

Vậy x = 2

trần đức hiệp
10 tháng 4 2019 lúc 20:45

x=1/4

trần đức hiệp
10 tháng 4 2019 lúc 20:46

x=0,25

Ngô Chí Thành
Xem chi tiết
10D4_Nguyễn Thị Nhật Lin...
Xem chi tiết
Akai Haruma
19 tháng 6 2021 lúc 22:07

Lời giải:

Để hàm liên tục tại $x=0$ thì:

\(\lim\limits_{x\to 0+}f(x)=\lim\limits_{x\to 0-}f(x)=f(0)\)

\(\Leftrightarrow \lim\limits_{x\to 0+}\frac{\sqrt{x+1}-1}{2x}=\lim\limits_{x\to 0-}(2x^2+3mx+1)=1\)

\(\Leftrightarrow \lim\limits_{x\to 0+}\frac{1}{2(\sqrt{x+1}+1)}=0\Leftrightarrow \frac{1}{2}=0\) (vô lý)

Vậy không tồn tại $m$ thỏa mãn.

 

 

 

Nott mee
Xem chi tiết
Trần Đức Huy
2 tháng 2 2022 lúc 11:03

A\(A\le0< =>\dfrac{\sqrt{x}-1}{\sqrt{x}+4}\le0\)

             \(< =>\sqrt{x}-1\le0\left(do\sqrt{x}+4\ge0\right)\)

              \(< =>\sqrt{x}\le1< =>x\le1\)

Trần Đức Huy
2 tháng 2 2022 lúc 11:05

Với x\(\ge\)0

A≤0<=>x−1x+4≤0

             <=>x−1≤0(dox+4≥0)

              

Trần Đức Huy
2 tháng 2 2022 lúc 11:07

Với \(x\ge0\)

\(A\le0< =>\dfrac{\sqrt{x}-1}{\sqrt{x}+4}\le0\)

           \(< =>\sqrt{x-1}\le0\) (vì \(\sqrt{x}+4\ge0\))

           \(< =>x-1\le0< =>x\le1\)

Kết hợp với ĐKXĐ ta được \(0\le x\le1\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 4 2020 lúc 18:56

a/

\(\Leftrightarrow\frac{\left(x^2-1\right)\left(x^2+1\right)}{x^2+3x}+x^2-1\ge0\)

\(\Leftrightarrow\left(x^2-1\right)\left(\frac{x^2+1}{x^2+3x}+1\right)\ge0\)

\(\Leftrightarrow\left(x^2-1\right)\left(\frac{2x^2+3x+1}{x^2+3x}\right)\ge0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(2x+1\right)}{x\left(x+3\right)}\ge0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(2x+1\right)\left(x+1\right)^2}{x\left(x+3\right)}\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x< -3\\x=-1\\-\frac{1}{2}\le x< 0\\x\ge1\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
3 tháng 4 2020 lúc 19:02

b/

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)\left(\frac{-2-2x}{x}\right)\le0\)

\(\Leftrightarrow\frac{-2.\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+1\right)}{x}\le0\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)\left(x-2\right)\left(x+1\right)^2}{x}\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\le-2\\x=-1\\0< x\le1\\x\ge2\end{matrix}\right.\)

c/

\(\Leftrightarrow\left(\frac{4\left(x-1\right)-2x}{x\left(x-1\right)}\right)\left(\frac{x^2+1-2x}{x}\right)\le0\)

\(\Leftrightarrow\frac{\left(2x-4\right)\left(x-1\right)^2}{x^2\left(x-1\right)}\le0\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)^2}{x^2\left(x-1\right)}\le0\)

\(\Rightarrow1< x\le2\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
3 tháng 4 2020 lúc 19:06

d/

ĐKXĐ: \(\left\{{}\begin{matrix}x^3-4x\ge0\\\frac{1+x}{x}-2\ge0\\x\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x-2\right)\left(x+2\right)\ge0\\\frac{1-x}{x}\ge0\\x\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}-2\le x\le0\\x\ge2\end{matrix}\right.\\0< x\le1\\x\ne0\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại x thỏa mãn ĐKXĐ

Vậy BPT đã cho vô nghiệm

Khách vãng lai đã xóa
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 2 2022 lúc 17:38

Đặt \(\sqrt{1+a^2}+\sqrt{1-a^2}=x\Rightarrow\sqrt{2}\le x\le2\)

\(x^2=2+2\sqrt{1-a^4}\Rightarrow\sqrt{1-a^4}=\dfrac{x^2-2}{2}\)

\(\Rightarrow\dfrac{x^2-2}{2}+\left(b+1\right)x+b-4\le0\)

\(\Rightarrow x^2+2\left(b+1\right)x+2b-10\le0\)

\(\Rightarrow x^2+2x-10\le-2b\left(x+1\right)\)

\(\Rightarrow-2b\ge\dfrac{x^2+2x-10}{x+1}\)

\(\Rightarrow-2b\ge\max\limits_{\left[\sqrt{2};2\right]}f\left(x\right)\) với \(f\left(x\right)=\dfrac{x^2+2x-10}{x+1}\)

Xét trên \(\left[\sqrt{2};2\right]\) ta có:

\(f\left(x\right)=\dfrac{3x^2+6x-30}{3\left(x+1\right)}=\dfrac{3x^2+8x-28-2\left(x+1\right)}{3\left(x+1\right)}=\dfrac{\left(3x+14\right)\left(x-2\right)}{3\left(x+1\right)}-\dfrac{2}{3}\le-\dfrac{2}{3}\)

\(\Rightarrow-2b\ge-\dfrac{2}{3}\Rightarrow b\le\dfrac{1}{3}\)

Vậy \(b_{max}=\dfrac{1}{3}\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 3 2021 lúc 21:58

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt{x+4}-2}{x}=\lim\limits_{x\rightarrow0^+}\dfrac{x}{x\left(\sqrt{x+4}+2\right)}=\lim\limits_{x\rightarrow0^+}\dfrac{1}{\sqrt{x+4}+2}=\dfrac{1}{4}\)

\(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(mx^2+2m+\dfrac{1}{4}\right)=2m+\dfrac{1}{4}\)

Hàm liên tục tại x=0 khi: \(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=f\left(0\right)\)

\(\Leftrightarrow2m+\dfrac{1}{4}=\dfrac{1}{4}\Leftrightarrow m=0\)