Tìm m biết: \(2+sin2m-\sqrt{3}cos2m\le0\)
Tìm Min của m để \(\dfrac{4x-\sqrt{2x-1}-m}{\sqrt{x^2+\left(m-1\right)^2}-m+1}\le0\) có nghiệm.
Tìm x biết:
\(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}\le0\)
\(2016\sqrt{\left(x+1\right)^2}+2015\sqrt{\left(x-1\right)^2}\)
\(=2016\left|x+1\right|+2015\left|x-1\right|\) (1)
Ta thấy: \(\begin{cases}2016\left|x+1\right|\ge0\\2015\left|x-1\right|\ge0\end{cases}\)
\(\Rightarrow\left(1\right)\ge0\).Mà \(2016\left|x+1\right|+2015\left|x-1\right|\le0\)
\(\Rightarrow\begin{cases}2016\left|x+1\right|=0\\2015\left|x-1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}\left|x+1\right|=0\\\left|x-1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=-1\\x=1\end{cases}\)
Vô nghiệm (vì x ko nhận 2 giá trị khác nhau cùng lúc)
Vì \(\sqrt{\left(x+1\right)^2}\ge0;\sqrt{\left(x-1\right)^2}\ge0\)
=> \(2016.\sqrt{\left(x+1\right)^2}\ge0;2015.\sqrt{\left(x-1\right)^2}\ge0\)
=> \(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}\ge0\)
Mà theo đề bài: \(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}\le0\)
=> \(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}=0\)
=> \(\begin{cases}2016.\sqrt{\left(x+1\right)^2}=0\\2015.\sqrt{\left(x-1\right)^2}=0\end{cases}\)=> \(\begin{cases}\sqrt{\left(x+1\right)^2}=0\\\sqrt{\left(x-1\right)^2}=0\end{cases}\)=> \(\begin{cases}x+1=0\\x-1=0\end{cases}\) => \(\begin{cases}x=-1\\x=1\end{cases}\)
, vô lý vì x không thể cùng lúc nhận 2 giá trị khác nhau
Vậy không tồn tại giá trị của x thỏa mãn đề bài
tì x biết \(2\left(x-3\right)\sqrt{x-1}-x+4\le0\)
Ây da quên:
\(\left(2t+3\right)\left(t-1\right)^2\le0\)
Xét TH: VT = 0
Ta suy ra \(\orbr{\begin{cases}t=-\frac{3}{2}\left(L\right)\\t=1\left(C\right)\end{cases}}\Leftrightarrow x=2\)
Xet TH2: VT < 0 thì: \(t< -\frac{3}{2}\)
Kết hợp đk suy ra vô nghiệm.
Vậy x = 2
Tìm tẩ cả các giá trị của tham số thực để phương trình sin7x=cos2m có nghiệm
Tìm m để các hàm số f(x) = \(\left\{{}\begin{matrix}\dfrac{\sqrt{x+1}-1}{2x}khix>0\\2x^2+3mx+1khix\le0\end{matrix}\right.\) liên tục tại x=0
Lời giải:
Để hàm liên tục tại $x=0$ thì:
\(\lim\limits_{x\to 0+}f(x)=\lim\limits_{x\to 0-}f(x)=f(0)\)
\(\Leftrightarrow \lim\limits_{x\to 0+}\frac{\sqrt{x+1}-1}{2x}=\lim\limits_{x\to 0-}(2x^2+3mx+1)=1\)
\(\Leftrightarrow \lim\limits_{x\to 0+}\frac{1}{2(\sqrt{x+1}+1)}=0\Leftrightarrow \frac{1}{2}=0\) (vô lý)
Vậy không tồn tại $m$ thỏa mãn.
\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+4}\). Tìm x để \(A\le0\)
A\(A\le0< =>\dfrac{\sqrt{x}-1}{\sqrt{x}+4}\le0\)
\(< =>\sqrt{x}-1\le0\left(do\sqrt{x}+4\ge0\right)\)
\(< =>\sqrt{x}\le1< =>x\le1\)
Với \(x\ge0\)
\(A\le0< =>\dfrac{\sqrt{x}-1}{\sqrt{x}+4}\le0\)
\(< =>\sqrt{x-1}\le0\) (vì \(\sqrt{x}+4\ge0\))
\(< =>x-1\le0< =>x\le1\)
Kết hợp với ĐKXĐ ta được \(0\le x\le1\)
Giải bất phương trình
1) \(\frac{x^4-1}{x^2+3x}+x^2\ge1\)
2) \(\left(x^4-5x^2+4\right)\left(\frac{x-2}{x}-3\right)\le0\)
3) \(\left(\frac{4}{x}-\frac{2}{x-1}\right)\left(\frac{x^2+1}{x}-2\right)\le0\)
4) \(\left(\sqrt{x^3-4x}-\sqrt{15}\right)\sqrt{\frac{1+x}{x}-2}\le0\)
a/
\(\Leftrightarrow\frac{\left(x^2-1\right)\left(x^2+1\right)}{x^2+3x}+x^2-1\ge0\)
\(\Leftrightarrow\left(x^2-1\right)\left(\frac{x^2+1}{x^2+3x}+1\right)\ge0\)
\(\Leftrightarrow\left(x^2-1\right)\left(\frac{2x^2+3x+1}{x^2+3x}\right)\ge0\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(2x+1\right)}{x\left(x+3\right)}\ge0\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(2x+1\right)\left(x+1\right)^2}{x\left(x+3\right)}\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x< -3\\x=-1\\-\frac{1}{2}\le x< 0\\x\ge1\end{matrix}\right.\)
b/
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)\left(\frac{-2-2x}{x}\right)\le0\)
\(\Leftrightarrow\frac{-2.\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+1\right)}{x}\le0\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)\left(x-2\right)\left(x+1\right)^2}{x}\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x\le-2\\x=-1\\0< x\le1\\x\ge2\end{matrix}\right.\)
c/
\(\Leftrightarrow\left(\frac{4\left(x-1\right)-2x}{x\left(x-1\right)}\right)\left(\frac{x^2+1-2x}{x}\right)\le0\)
\(\Leftrightarrow\frac{\left(2x-4\right)\left(x-1\right)^2}{x^2\left(x-1\right)}\le0\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)^2}{x^2\left(x-1\right)}\le0\)
\(\Rightarrow1< x\le2\)
d/
ĐKXĐ: \(\left\{{}\begin{matrix}x^3-4x\ge0\\\frac{1+x}{x}-2\ge0\\x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x-2\right)\left(x+2\right)\ge0\\\frac{1-x}{x}\ge0\\x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}-2\le x\le0\\x\ge2\end{matrix}\right.\\0< x\le1\\x\ne0\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại x thỏa mãn ĐKXĐ
Vậy BPT đã cho vô nghiệm
Cho \(-1\le a\le1\). Tìm GTLN của b sao cho BĐT đúng \(\sqrt{1-a^4}+\left(b+1\right)\left(\sqrt{1+a^2}+\sqrt{1-a^2}\right)+b-4\le0\)
Đặt \(\sqrt{1+a^2}+\sqrt{1-a^2}=x\Rightarrow\sqrt{2}\le x\le2\)
\(x^2=2+2\sqrt{1-a^4}\Rightarrow\sqrt{1-a^4}=\dfrac{x^2-2}{2}\)
\(\Rightarrow\dfrac{x^2-2}{2}+\left(b+1\right)x+b-4\le0\)
\(\Rightarrow x^2+2\left(b+1\right)x+2b-10\le0\)
\(\Rightarrow x^2+2x-10\le-2b\left(x+1\right)\)
\(\Rightarrow-2b\ge\dfrac{x^2+2x-10}{x+1}\)
\(\Rightarrow-2b\ge\max\limits_{\left[\sqrt{2};2\right]}f\left(x\right)\) với \(f\left(x\right)=\dfrac{x^2+2x-10}{x+1}\)
Xét trên \(\left[\sqrt{2};2\right]\) ta có:
\(f\left(x\right)=\dfrac{3x^2+6x-30}{3\left(x+1\right)}=\dfrac{3x^2+8x-28-2\left(x+1\right)}{3\left(x+1\right)}=\dfrac{\left(3x+14\right)\left(x-2\right)}{3\left(x+1\right)}-\dfrac{2}{3}\le-\dfrac{2}{3}\)
\(\Rightarrow-2b\ge-\dfrac{2}{3}\Rightarrow b\le\dfrac{1}{3}\)
Vậy \(b_{max}=\dfrac{1}{3}\)
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt{x+4}-2}{x}\left(x>0\right)\\mx^2+2m+\dfrac{1}{4}\left(x\le0\right)\end{matrix}\right.\) (m là tham số). tìm m để hàm số liên tục tại x=0
\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt{x+4}-2}{x}=\lim\limits_{x\rightarrow0^+}\dfrac{x}{x\left(\sqrt{x+4}+2\right)}=\lim\limits_{x\rightarrow0^+}\dfrac{1}{\sqrt{x+4}+2}=\dfrac{1}{4}\)
\(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(mx^2+2m+\dfrac{1}{4}\right)=2m+\dfrac{1}{4}\)
Hàm liên tục tại x=0 khi: \(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=f\left(0\right)\)
\(\Leftrightarrow2m+\dfrac{1}{4}=\dfrac{1}{4}\Leftrightarrow m=0\)