cho \(A\left(x_1;y_1\right);B\left(x_2;y_2\right)\) là 2 điểm nằm trên đường thẳng \(y=\sqrt{3}x+b\)
Cho hàm số \(f\left( x \right) = x + 1\).
a) So sánh \(f\left( 1 \right)\) và \(f\left( 2 \right)\).
b) Chứng minh rằng nếu \({x_1},{x_2} \in \mathbb{R}\) sao cho \({x_1} < {x_2}\) thì \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\).
a) Ta có:
\(f\left( 1 \right) = 1 + 1 = 2\)
\(f\left( 2 \right) = 2 + 1 = 3\)
\( \Rightarrow f\left( 2 \right) > f\left( 1 \right)\)
b) Ta có:
\(f\left( {{x_1}} \right) = {x_1} + 1;f\left( {{x_2}} \right) = {x_2} + 1\)
\(\begin{array}{l}f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \left( {{x_1} + 1} \right) - \left( {{x_2} + 1} \right)\\ = {x_1} - {x_2} < 0\end{array}\)
Vậy \({x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\).
Cho PT: \(x^2-x-3m-2\)
a) Tìm m PT có nghiệm kép. Tìm nghiệm kép khi đó.
b) Tính \(\left(x_1+x_2\right)^2-3x_1x_2.\)
c) Tính \(\left(x_1+x_2\right)^2.\)
d) Tính \(\left(x_1\right)^2\left(x_2\right)^2.\)
e) Tính \(\left(x_1\right)^3+\left(x_2\right)^3.\)
a: \(x^2-x-3m-2=0\)
\(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-3m-2\right)\)
\(=1+12m+8=12m+9\)
Để phương trình có nghiệm kép thì Δ=0
=>12m+9=0
=>12m=-9
=>\(m=-\dfrac{3}{4}\)
Thay m=-3/4 vào phương trình, ta được:
\(x^2-x-3\cdot\dfrac{-3}{4}-2=0\)
=>\(x^2-x+\dfrac{1}{4}=0\)
=>\(\left(x-\dfrac{1}{2}\right)^2=0\)
=>\(x-\dfrac{1}{2}=0\)
=>\(x=\dfrac{1}{2}\)
b: Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-1\right)}{1}=1\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-3m-2}{1}=-3m-2\end{matrix}\right.\)
\(\left(x_1+x_2\right)^2-3x_1x_2\)
\(=1^2-3\left(-3m-2\right)\)
\(=1+9m+6=9m+7\)
c: \(\left(x_1+x_2\right)^2=1^2=1\)
d: \(\left(x_1\right)^2\cdot\left(x_2\right)^2=\left[x_1x_2\right]^2\)
\(=\left(-3m-2\right)^2\)
\(=9m^2+12m+4\)
Cho phương trình \(3x^2-12x+2=0\) không giải phương trình hãy tính biểu thức A= \(x_1\left(x_1^2+x_2\right)+x_2\left(x_2^2-x_1\right)\)
Phương trình có 2 nghiệm
Theo Vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=\dfrac{2}{3}\end{matrix}\right.\)
Ta có: \(A=x_1^3+x_1x_2+x_2^3-x_1x_2=\left(x_1+x_2\right)\left(x_1^2+x^2_2-x_1x_2\right)\)
\(=\left(x_1+x_2\right)\left[\left(x_2+x_1\right)^2-3x_2x_1\right]=4\cdot\left(4^2-3\cdot\dfrac{2}{3}\right)=56\)
Cho \(x_1,x_2\in\left[0,1\right]\)
a) Chứng minh \(\left(1+x_1\right)^2\ge4x_1^2\)
b) Chứng minh \(\left(1+x_1+x_2\right)^2\ge4\left(x_1^2+x_2^2\right)\)
x1=a; x2=b
a)
(a+1)^2>=4a^2=(2a)^2
<=>(a+1-2a)(a+1+2a)>=0
<=>(1-a)(3a+1)>=0
a€[0;1]
3a+1>0
1-a>=0
=>dpcm
cho pt : \(3x^2-4x-8=0\)
a) Chứng minh pt có 2 nghiệm phân biệt
b) Không giải pt hãy tính: A= \(\left(x_1-1\right)x_1+\left(x_2-1\right)x_2\) B=\(x^2_1x^2_2-\left(x_1-x_2\right)^2\)
C= \(2x^2_1+2x^2_2-x^2_1x_2-x^2_2x_1\)
\(\Delta'=\left(-2\right)^2-3.\left(-8\right)=4+24=28>0.\)
\(\Rightarrow\) Pt có 2 nghiệm phân biệt \(x_1;x_2.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{2+2\sqrt{7}}{3}.\\x_2=\dfrac{2-2\sqrt{7}}{3}.\end{matrix}\right.\)
Cho pt: \(4x^2-4mx-1=0\) (m là tham số)
a. C/M pt luôn có 2 nghiệm phân biệt \(x_1,x_2\)
b. Tìm m để \(x_1\left(4x_1+x_2\right)-x_2\left(4x_2-x_1\right)=32x_1^3x_2^3\)
làm câu (b) được rồi á
mà mình biến đổi tới khúc này:
\(4m\left(x_1-x_2\right)=0\) (Yên tâm đúng ạ)
=> \(\left[{}\begin{matrix}m=0\\x_1-x_2=0\end{matrix}\right.\) => \(\left[{}\begin{matrix}m=0\\x_1=x_2\end{matrix}\right.\) (Tới khúc này thì chia trhop gì đó nhưng em không biết làm ai cứu em với ạ:"(
\(m=0\) là okee rồi nè
còn \(x_1=x_2\) thì như sau :
\(\Leftrightarrow x_1-x_2=0\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=0^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\)
Tới đây rồi áp dụng cái Vi-ét vào là được m còn lại nhe.
1) Cho pt \(3x^2+5x-6=0\) có 2 nghiệm \(x_1,x_2\) (không giải pt)
Tính giá trị biểu thức \(A=\left(x_1-2x_2\right)\left(2x_1-x_2\right)\)
2) Cho pt \(3x^2-5x-3=0\) có nghiệm \(x_1,x_2\) ( không giải pt)
Tính giá trị biểu thức \(B=x^3_1.x_2+x_1.x^3_2\)
1, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=-6\end{matrix}\right.\)
\(A=\left(x_1-2x_2\right)\left(2x_1-x_2\right)\\ =2x_1^2-4x_1x_2-x_1x_2+2x_1^2\\ =2\left(x_1^2+x_2^2\right)-5x_1x_2\\ =2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\\ =2\left(-5\right)^2-4.\left(-6\right)-5.\left(-6\right)\\ =104\)
2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-3\end{matrix}\right.\)
\(B=x_1^3x_2+x_1x_2^3\\ =x_1x_2\left(x_1^2+x_2^2\right)\\ =\left(-3\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\\ =\left(-3\right)\left[5^2-2\left(-3\right)\right]\\ =-93\)
Cho hàm số \(y=f\left(x\right)=ax\left(a\ne0\right)\) xác định với mọi \(x\in Q\)
Tìm giá rị của a để \(f\left(x_1\right)\cdot f\left(x_2\right)=f\left(x_1\cdot x_2\right)\)
Giúp mình với :3
\(f\left(x_1\right)=ax_1\) ; \(f\left(x_2\right)=ax_2\) ; \(f\left(x_1x_2\right)=ax_1x_2\)
Để \(f\left(x_1\right)f\left(x_2\right)=f\left(x_1x_2\right)\)
\(\Leftrightarrow ax_1.ax_2=ax_1x_2\)
\(\Leftrightarrow a^2x_1x_2=ax_1x_2\)
\(\Leftrightarrow a^2=a\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\left(loại\right)\\a=1\end{matrix}\right.\)
Vậy \(a=1\)
Cho hàm số y=f(x)=ax (a không thể bằng 0). Tìm giá trị của a để \(f\left(x_1\right).f\left(x_2\right)=f\left(x_1.x_2\right)\) với mọi \(x_1;x_2\)
Cho n số thực \(x_1;x_2;x_3;...;x_n\left(n\ge3\right)\)
\(CMR:max\left\{x_1;x_2;x_3;...;x_n\right\}\ge\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+...+\left|x_{n-1}-x_n\right|+\left|x_n-x_1\right|}{2n}\)
\(max\left\{x_1;x_2;...;x_n\right\}\ge\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+...+\left|x_{n-1}-x_n\right|+\left|x_n-x_1\right|}{2n}\)
Đề Tuyển sinh lớp 10 chuyên toán ĐHSP Hà Nội 2012-2013
NGUỒN:CHÉP MẠNG,CHÉP Y CHANG CHỨ E KO HIỂU GÌ ĐÂU(vài dòng đầu)-lỡ như anh cần mak ko có key. ( VÔ TÌNH TRA TÀI LIỆU THÌ THẦY BÀI NÀY )
P/S:Xin đừng bốc phốt.
Để ý trong 2 số thực x,y bất kỳ luôn có
\(Min\left\{x;y\right\}\le x,y\le Max\left\{x,y\right\}\) và \(Max\left\{x;y\right\}=\frac{x+y+\left|x-y\right|}{2}\)
Ta có:
\(\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+.....+\left|x_n-x_1\right|}{2n}\)
\(=\frac{x_1+x_2+\left|x_1-x_2\right|}{2n}+\frac{x_2+x_3+\left|x_2-x_3\right|}{2n}+.....+\frac{x_3+x_4+\left|x_3-x_4\right|}{2n}+\frac{x_4+x_5+\left|x_4-x_5\right|}{2n}\)
\(\le\frac{Max\left\{x_1;x_2\right\}+Max\left\{x_2;x_3\right\}+.....+Max\left\{x_n;x_1\right\}}{n}\)
\(\le Max\left\{x_1;x_2;x_3;.....;x_n\right\}^{đpcm}\)