Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồ Hiền Nhân
Xem chi tiết
Minh Triều
16 tháng 7 2016 lúc 21:10

a+b+c=0

=>a+b=-c;b+c=-a;a+c=-b

Thay a+b=-c;b+c=-a;a+c=-b là M ta được:\(M=\frac{-c}{c}+\frac{-a}{a}+\frac{-b}{b}=-1-1-1=-3\)

Nguyễn Thị Bình Yên
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 2 2020 lúc 8:52

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

a/ \(VT=\frac{1}{a+a+b+c}+\frac{1}{a+b+b+c}+\frac{1}{a+b+c+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\frac{3}{4}\)

b/ \(VT\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{bc}{4}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{ca}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(VT\le\frac{a}{4}+\frac{b}{4}+\frac{b}{4}+\frac{c}{4}+\frac{c}{4}+\frac{a}{4}=\frac{a+b+c}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

Khách vãng lai đã xóa
Huỳnh Kim Bích Ngọc
Xem chi tiết
pham trung thanh
11 tháng 10 2017 lúc 15:15

Nâng cao và phát triển toán 8 tập 1 bài 153*

Thư Hàn
Xem chi tiết
Diệu Huyền
1 tháng 12 2019 lúc 16:49

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=2\)

Vậy ta có: \(a+b=2c;b+c=2a;c+a=2b\)

Thay vào biểu thức ta có:

\(A=\frac{a}{2a}+\frac{2c}{c}\)

\(=2+2=4\)

Vậy \(A=4\)

Khách vãng lai đã xóa
Diệu Huyền
1 tháng 12 2019 lúc 16:55

Cái này mới đúng nè:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{a+b}{c}=2\\\frac{a}{b+c}=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow A=\frac{1}{2}+2=\frac{5}{2}\)

Khách vãng lai đã xóa
Vi Na
Xem chi tiết
Đinh Tuấn Việt
10 tháng 7 2016 lúc 19:30

a + b + c = 0  =>  a + b = -c ; b + c = -a ; a + c = -b

Do đó \(M=\frac{-c}{c}+\frac{-a}{a}+\frac{-b}{b}=-1+\left(-1\right)+\left(-1\right)=-3\)

Nết Đặng
16 tháng 7 2016 lúc 16:33

Ta có :\(a+b+c=0=>a+b=-c;b+c=-a;a+c=-b\)

Do đó : \(M=-\frac{c}{c}+-\frac{b}{b}+-\frac{c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)

 

Trần Anh Thơ
Xem chi tiết
Nguyễn Thị Ngọc Thơ
28 tháng 5 2020 lúc 20:14

#Xin lỗi cho t gửi nhờ

Ta có:

\(\frac{x}{1+4y^2}=\frac{x\left(1+4y^2\right)-4xy^2}{1+4y^2}=x-\frac{4xy^2}{1+4y^2}\)

Áp dụng BĐT AM-GM cho các số không âm, ta có:

\(1+4y^2\ge4y\Rightarrow\frac{4xy^2}{1+4y^2}\le\frac{4xy^2}{4y}=xy\) \(\Rightarrow-\frac{4xy^2}{1+4y^2}\ge-xy\)

\(\Rightarrow\frac{x}{1+4y^2}\ge x-xy\)

Tương tự ta có: \(P\ge x+y+z-\left(xy+yz+zx\right)\)

C/m ở câu a: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)

\(\Rightarrow-\left(xy+yz+zx\right)\ge-\frac{\left(x+y+z\right)^2}{3}\)

Khi đó: \(P\ge x+y+z-\frac{\left(x+y+z\right)^2}{3}=\frac{3}{2}-\frac{\left(\frac{3}{2}\right)^2}{3}=\frac{3}{4}\)

Dấu ''='' xảy ra \(\Leftrightarrow x=y=z=\frac{1}{2}\)

Vậy...

Akai Haruma
29 tháng 5 2020 lúc 0:04

Lời giải:

Nên bổ sung thêm điều kiện $a,b,c$ đôi một phân biệt. Đặt biểu thức cần chứng minh bằng $0$ là $P$

Ta có:

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow \left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)=0\)

\(\Leftrightarrow \frac{a}{(b-c)^2}+\frac{b}{(c-a)^2}+\frac{c}{(a-b)^2}+\frac{b}{(b-c)(c-a)}+\frac{c}{(b-c)(a-b)}+\frac{a}{(c-a)(b-c)}+\frac{c}{(c-a)(a-b)}+\frac{a}{(a-b)(b-c)}+\frac{b}{(a-b)(c-a)}=0\)

\(\Leftrightarrow P+\frac{b(a-b)+c(c-a)+a(a-b)+c(b-c)+a(c-a)+b(b-c)}{(a-b)(b-c)(c-a)}=0\)

\(\Leftrightarrow P+\frac{0}{(a-b)(b-c)(c-a)}=0\Rightarrow P=0\) (đpcm)

Hồ Hiền Nhân
Xem chi tiết
Đừng gọi tôi là Jung Hae...
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 6 2019 lúc 10:41

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+0.\frac{2}{abc}}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\left(a+b+c\right).\frac{2}{abc}}\)

\(=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{ac}+\frac{2}{bc}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)

Vũ Diệu Linh
Xem chi tiết
Nguyễn Thị BÍch Hậu
9 tháng 6 2015 lúc 15:47

cái này hình như sai đề bạn ạ. vì : a,b,c >0 => a+b , b+c, c+a >0

=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>0\)

với \(A>0\) ta luôn có: \(A>\sqrt{A}\) như 2 > căn 2 chẳng hạn

=> \(\frac{a}{a+b}>\sqrt{\frac{a}{a+b}}\) hay \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\)

Muốn đỗ chuyên Toán
Xem chi tiết
Trần Minh Hoàng
5 tháng 12 2020 lúc 9:16

Ta chứng minh bất đẳng thức phụ:

\(\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\ge\frac{4a}{b+c}+\frac{4b}{c+a}+\frac{4c}{a+b}\). (*)

Thật vậy, áp dụng bất đẳng thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) với x, y > 0 ta có:

\(\frac{4a}{b+c}+\frac{4b}{c+a}+\frac{4c}{a+b}\le a\left(\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{c}+\frac{1}{a}\right)+c\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\).

Do đó (*) đúng.

Suy ra: \(A\ge80\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-17\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=63\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\).

Áp dụng bất đẳng thức \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\) (bất đẳng thức Nesbitt) ta có \(A\ge\frac{189}{2}\).

Đẳng thức xảy ra khi a = b = c.

Vậy Min A = \(\frac{189}{2}\) khi a = b = c.

Khách vãng lai đã xóa