HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho các số thực a,b,c thỏa mãn -1≤a≤b≤c≤2 và a+b+c=0 . CMR : \(a^2+b^2+c^2\)≤6
Cho x,y,z > 0 ; \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\).Chung minh:\(\sqrt{\frac{xy}{x+y+2z}}+\sqrt{\frac{yz}{y+z+2x}}+\sqrt{\frac{xz}{x+z+2y}}\\\)≤\(\frac{1}{2}\)
Giải hpt : \(\left\{{}\begin{matrix}x^2+y^2+xy+1=2x\\x\left(x+y\right)^2+x-2=2y^2\end{matrix}\right.\)
Cho a,b,c>0
Tìm GTNN : \(A=20\left(\frac{b+c}{a}+\frac{a+b}{c}+\frac{a+c}{b}\right)-17\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
Giải hệ phương trình : \(\left\{{}\begin{matrix}x^3+3xy^2=\frac{1}{2}\\x^4+6x^2y^2+y^4=\frac{1}{2}\end{matrix}\right.\)
Cho các số thực dương a,b,c thỏa mãn ab+bc+ac=1
Tìm giá trị lớn nhất của biểu thức \(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt[]{1+b^2}}+\frac{c}{\sqrt{1+c^2}}-a^2-28b^2-28c^2\)
Cho a,b,c là các số thực thỏa mãn 0≤a≤b≤c≤1 . Tìm giá trị nhỏ nhất của biểu thức \(A=\left(a+b+c+3\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
Cho a,b,c là 3 số thực thỏa mãn 0≤a,b,c≤1 . Tìm giá trị lớn nhất của biểu thức A=\(\left(a+b+c+3\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
Cho phương trình \(x^2-m^2x+2m+2=0\). Tìm m nguyên dương để phương trình có 2 nghiệm nguyên