cho hpt \(\left\{{}\begin{matrix}3x+y=2m+9\\x+y=5\end{matrix}\right.\)có nghiệm (x;y). Tìm m để biểu thức (xy+x-1) đạt gtln
1) cho hpt: \(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
tìm m để hpt có nghiệm (\(x_0,y_0\)) t/m: \(x_0^2+y_0^2=9m\)
2) cho hpt: \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
tìm m để hpt có nghiệm duy nhất \(\left(x_0,y_0\right)\) t/m: \(x_0^2-2x_0-y_0>0\)
giúp mk vs mk cần gấp
Bài 1.
\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)
\(x_0^2+y_0^2=9m\)
\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)
\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)
\(\Leftrightarrow2m^2-7m+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )
1. Cho hpt \(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\)
Tìm m để hpt có nghiệm (x;y) thỏa \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\)
2. Cho hpt \(\left\{{}\begin{matrix}2x+y=3m+1\\3x+2y=2m-3\end{matrix}\right.\)
Với giá trị nào của m thì hpt có nghiệm (x;y) thỏa \(\left\{{}\begin{matrix}x< 1\\y< 6\end{matrix}\right.\)
1)
\(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+3y=12\\2x+3y=m\end{matrix}\right.\)
trừ 2 vế của pt cho nhau ta tìm được
\(\left\{{}\begin{matrix}x=12-m\\y=m-8\end{matrix}\right.\)
để \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< 12\\m< 8\end{matrix}\right.\Rightarrow}m< 8}\)
Cho hpt \(\left\{{}\begin{matrix}3x-2y=2m^2-3\\x-y=3\end{matrix}\right.\)
Tìm các giá trị m nguyên để hpt có nghiệm (x;y) t/m \(x^2-y^2=-15\)
1. Giải các hpt sau:
a, \(\left\{{}\begin{matrix}x-y=4\\3x+4y=19\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}x-\sqrt{3y}=\sqrt{3}\\\sqrt{3x}+y=7\end{matrix}\right.\)
2. Giải các hpt sau:
a, \(\left\{{}\begin{matrix}2-\left(x-y\right)-3\left(x+y\right)=5\\3\left(x-y\right)+5\left(x+y\right)=-2\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}\dfrac{2}{x-2}+\dfrac{2}{y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{y-1}=1\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x+y=24\\\dfrac{x}{9}+\dfrac{y}{27}=2\dfrac{8}{9}\end{matrix}\right.\) d, \(\left\{{}\begin{matrix}\sqrt{x-1}-3\sqrt{y+2}=2\\2\sqrt{x-1}+5\sqrt{y+2=15}\end{matrix}\right.\)
3. Cho hpt \(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\)
a, Giải hpt khi m=\(\sqrt{2}\)
b, tìm giá trị của m để hpt có nghiệm duy nhất thỏa mãn: x+y>0
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
Cho hpt \(\left\{{}\begin{matrix}x-y=4m+8\\x-3y=6-2m^2\end{matrix}\right.\)
Tìm m nguyên dương để hpt có nghiệm (x;y) t/m \(\sqrt{x}+\sqrt{y}=8\)
1) cho hpt: \(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
tìm m để hpt có nghiệm \(\left(x_0,y_0\right)\) t/m: \(x_0^2+y_0^2=9m\)
giúp mk vs mk cần gấp
Cho hệ phương trình \(\left\{{}\begin{matrix}3x+y=2m+9\\x+y=5\end{matrix}\right.\) có nghiệm (x; y). Tìm m để biểu thức (xy+x-1) đạt giá trị lớn nhất.
Ta có: \(\left\{{}\begin{matrix}3x+y=2m+9\\x+y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x+5-x=2m+9\\y=5-x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x=2m+4\\y=5-x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=5-m-2\end{matrix}\right.\)
Gọi A=xy+x-1, ta có: \(A=\left(m+2\right)\left(5-m-2\right)+m+2-1\)
\(A=\left(m+2\right)\left(3-m\right)+m+1\)
\(A=-m^2+m+6+m+1\)
\(A=-m^2+2m+7=-\left(m-1\right)^2+8\)
\(A_{max}=7\Leftrightarrow m=1\) Khi đó x=3, y=2
Cho hệ pt:\(\left\{{}\begin{matrix}x+my=m+1\\\\mx+y=2m\end{matrix}\right.\)
1)Giải hpt khi m=2
2)Tìm m để hpt thỏa mãn \(\left\{{}\begin{matrix}x\ge2\\\\y\ge1\end{matrix}\right.\)
thay m=2 vào HPT ta có
\(\left\{{}\begin{matrix}x+2y=2+1\\2x+y=2.2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2y=3\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+4y=6\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3y=2\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)
vậy ..........
1,GTLN của \(P=\sqrt{x-2}+2\sqrt{x+1}-x+2013\)
2, nghiệm của hpt \(\left\{{}\begin{matrix}2\sqrt{x}+3y^3=28\\2y^3-5\sqrt{x}=6\end{matrix}\right.\) là \(\left(x,y\right)=\left(...;...\right)\)
3, cho hpt \(\left\{{}\begin{matrix}x-y=2\\mx+y=3\end{matrix}\right.\). tìm m để hpt có nghiệm (x,y) sao cho tích xy đạt GTNN. kết quả m =...
4,cho 2 số a, tm\(a^2+b^2=4a+bc+540\)
GTLN của \(P=23a+4b+2013\)
5, cho đa thức P(x) tm \(P\left(x-1\right)+2P\left(2\right)=x^2\). Giá trị của \(P\left(\sqrt{2013}-1\right)\) bằng ...
Câu 1:
\(ĐK:x\ge2\)
Áp dụng BĐT cauchy ta có:
\(\left(x+1\right)+4\ge2\sqrt{4\left(x+1\right)}=4\sqrt{x+1}\\ \Leftrightarrow2\sqrt{x+1}\le\dfrac{x+5}{2}\)
Ta có \(\left(x-2\right)+1\ge2\sqrt{x-2}\Leftrightarrow\sqrt{x-2}\le\dfrac{x-1}{2}\)
\(\Leftrightarrow P\le\dfrac{x+5}{2}+\dfrac{x-1}{2}-x+2013=x+2-x+2013=2015\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+1=4\\x-2=1\end{matrix}\right.\Leftrightarrow x=3\)
Câu 2:
\(HPT\Leftrightarrow\left\{{}\begin{matrix}10\sqrt{x}+15y^3=140\\4y^3-10\sqrt{x}=12\end{matrix}\right.\left(x\ge0\right)\\ \Leftrightarrow19y^3=152\\ \Leftrightarrow y^3=8\Leftrightarrow y=2\\ \Leftrightarrow2\sqrt{x}+24=28\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)
Vậy \(\left(x;y\right)=\left(4;2\right)\)
Câu 3:
\(HPT\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\my+2m+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=\dfrac{3-2m}{m+1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{m+1}\\x=\dfrac{3-2m}{m+1}\end{matrix}\right.\\ \Leftrightarrow xy=\dfrac{5\left(3-2m\right)}{\left(m+1\right)^2}\)
Đặt \(xy=t\)
\(\Leftrightarrow m^2t+2mt+t=15-10m\\ \Leftrightarrow m^2t+2m\left(t+5\right)+t-15=0\)
PT có nghiệm nên \(\Delta'=\left(t+5\right)^2-t\left(t-15\right)\ge0\)
\(\Leftrightarrow10t+25+15t\ge0\Leftrightarrow t\ge-1\)
Vậy \(xy_{min}=-1\Leftrightarrow\dfrac{5\left(2m-3\right)}{\left(m+1\right)^2}=1\Leftrightarrow m^2-8m+16=0\Leftrightarrow m=4\)
Câu 4: \(a^2+b^2=4a+bc+540\)
c đâu ra vậy?
Câu 5:
Thay \(x=3\Leftrightarrow P\left(2\right)+2P\left(2\right)=3^2\Leftrightarrow P\left(2\right)=3\)
Thay \(x=\sqrt{2013}\)
\(\Leftrightarrow P\left(\sqrt{2013}-1\right)+2P\left(2\right)=\left(\sqrt{2013}\right)^2=2013\\ \Leftrightarrow P\left(\sqrt{2013}-1\right)+6=2013\\ \Leftrightarrow P\left(\sqrt{2013}-1\right)=2007\)