Giải phương trình chứa căn thức bậc ba sau:
\(2\sqrt[3]{2x-1}-\sqrt[3]{3x-2}=1\)
Giải các phương trình chứa căn thức sau:
a) \(\sqrt {2{x^2} - 6x + 3} = \sqrt {{x^2} - 3x + 1} \)
b) \(\sqrt {{x^2} + 18x - 9} = 2x - 3\)
a) Bình phương hai vế của phương trình ta được:
\(2{x^2} - 6x + 3 = {x^2} - 3x + 1\)
Sau khi thu gọn ta được: \({x^2} - 3x + 2 = 0\). Từ đó tìm được \(x = 1\) hoặc \(x = 2\)
Thay lần lượt hai giá trị này của x vào phương trình ban đầu, ta thấy chỉ có \(x = 2\) thỏa mãn.
Vậy nghiệm của PT đã cho là \(x = 2\)
b) Bình phương hai vế của phương trình ta được:
\({x^2} + 18x - 9 = 4{x^2} - 12x + 9\)
Sau khi thu gọn ta được: \(3{x^2} - 30x + 18 = 0\). Từ đó tìm được \(x = 5 + \sqrt {19} \) hoặc \(x = 5 - \sqrt {19} \)
Thay lần lượt hai giá trị này của x vào phương trình ban đầu, ta thấy chỉ có \(x = 5 + \sqrt {19} \) thỏa mãn.
Vậy nghiệm của PT đã cho là \(x = 5 + \sqrt {19} \)
1. giải phương trình chứa căn bậc 2
a) \(\sqrt{x^2-x+1}=x\)
b) \(\sqrt{x^2-3x+2}+\sqrt{x^2+x-6}=0\)
c) \(\sqrt{x^4-2x^2+1}=x-1\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2-x+1=x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\1-x=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\)
b.
ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-3\end{matrix}\right.\)
Do \(\left\{{}\begin{matrix}\sqrt{x^2-3x+2}\ge0\\\sqrt{x^2+x-6}\ge0\end{matrix}\right.\) với mọi x thuộc TXĐ
\(\Rightarrow\sqrt{x^2-3x+2}+\sqrt{x^2+x-6}\ge0\)
Đẳng thức xảy ra khi:
\(\left\{{}\begin{matrix}x^2-3x+2=0\\x^2+x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=2\) (thỏa mãn ĐKXĐ)
Vậy pt có nghiệm duy nhất \(x=2\)
c.
Với \(x< 1\Rightarrow\left\{{}\begin{matrix}x-1< 0\\\sqrt{x^4-2x^2+1}\ge0\end{matrix}\right.\) phương trình vô nghiệm
Với \(x\ge1\) pt tương đương:
\(\sqrt{\left(x^2-1\right)^2}=x-1\)
\(\Leftrightarrow\left|x^2-1\right|=x-1\)
\(\Leftrightarrow x^2-1=x-1\) (do \(x\ge1\Rightarrow x^2-1\ge0\Rightarrow\left|x^2-1\right|=x-1\))
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0< 1\left(loại\right)\\x=1\end{matrix}\right.\)
giải pt sau :
\(2\sqrt{x^2-\dfrac{1}{4}+\sqrt{x^2-\dfrac{1}{4}+\sqrt{...+\sqrt{x^2-\dfrac{1}{4}+\sqrt{x^2+x+\dfrac{1}{4}}}}}}=2x^3+3x^2+3x+1\)
trong đó biểu thức ở vế trái có 2010 dấu căn thức bậc 2
* Tìm điều kiện để căn thức bậc hai có nghĩa
a. \(\sqrt{3-2x}\)
b. \(\sqrt{\dfrac{-5}{2x+1}}\)
* Giải phương trình
a. \(\sqrt{\left(2x-3\right)^2}=5\)
b. \(\sqrt{9x+9}+\sqrt{4x+4}-\sqrt{16x+16}=3\)
Bài 1 :
a, ĐKXĐ : \(3-2x\ge0\)
\(\Rightarrow x\le\dfrac{3}{2}\)
Vậy ...
b, ĐKXĐ : \(\left\{{}\begin{matrix}-\dfrac{5}{2x+1}\ge0\\2x+1\ne0\end{matrix}\right.\)
\(\Rightarrow2x+1< 0\)
\(\Rightarrow x< -\dfrac{1}{2}\)
Vậy ...
a,ĐKXĐ \(3-2\text{x}>0\Leftrightarrow-2x>-3\Leftrightarrow\text{x}< \dfrac{3}{2}\)
b,\(\dfrac{-5}{2x+1}>0\Leftrightarrow2x+1< 0\Leftrightarrow2x=-1\Leftrightarrow x=\dfrac{-1}{2}\)
( bây giờ mình bận nên làm trước 2 bài =))
a, \(x\le\dfrac{3}{2}\)
b, \(x< -\dfrac{1}{2}\)
*a, \(\sqrt{\left(2x-3\right)^2}=5=>|2x-3|=5=>\left[{}\begin{matrix}2x-3=5\\2x-3=-5\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
b, \(\sqrt{9x+9}+\sqrt{4x+4}-\sqrt{16x+16}=3\)
\(< =>3\sqrt{x+1}+2\sqrt{x+1}-4\sqrt{x+1}=3\)\(\left(x\ge-1\right)\)
\(< =>\sqrt{x+1}=3=>x+1=9=>x=8\left(tm\right)\)
giải phương trình sau \(2x^3-2x+\sqrt{2x^3-3x+1}=3x+1+\sqrt[3]{x^2+2}\)
Bạn coi lại đề xem có sai không chứ nghiệm giải ra xấu cực. Và phương trình không rút gọn hết nghe cũng rất vô lý.
TÌM ĐIỀU KIỆN ĐỂ BIỂU THỨC TRONG CĂN BẬC 2 CÓ NGHĨA
1/\(\sqrt{\dfrac{2x-3}{2x^2+1}}\)
2/\(\sqrt{-2x+3}\)
3/\(\sqrt{-7x-14}\)
4/\(\sqrt{\dfrac{x^2+2}{1-4x}}\)
5/\(\sqrt{-5-3x}\)
1) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
2) ĐKXĐ: \(x\le\dfrac{3}{2}\)
3) ĐKXĐ: \(x\le-2\)
4) ĐKXĐ: \(x< \dfrac{1}{4}\)
5) ĐKXĐ: \(x\le-\dfrac{5}{3}\)
1.
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{x^2}{2x-1}}\)
b. \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}\)
* Giải phương trình
a. \(\sqrt{\left(x+1\right)^2}=3\)
b. \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\dfrac{x+1}{16}}=5\)
Giải các phương trình, bất phương trình sau:
1) \(\sqrt{3x+7}-5< 0\)
2) \(\sqrt{-2x-1}-3>0\)
3) \(\dfrac{\sqrt{3x-2}}{6}-3=0\)
4) \(-5\sqrt{-x-2}-1< 0\)
5) \(-\dfrac{2}{3}\sqrt{-3-x}-3>0\)
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
Giải phương trình chứa căn thức bậc hai
1 , \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
2 , \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{3+x}\)
3 , \(\sqrt{x-2}+\sqrt{x+1}=3\)
4 , \(\sqrt{x^2-3x+3}=2-x\)
5 , \(\sqrt{2-x^2}+\sqrt{x^2+8}=4\)
6 , \(1+\sqrt{x-1}=\sqrt{6-x}\)
7 , \(\sqrt{5x+1}-\sqrt{4x-1}=3\sqrt{x}\)
8 , \(\sqrt{x^2+x-5}+\sqrt{x^2+8x-4}=5\)