1) Chứng minh : \(x^2+y^2\)≥\(2x\sqrt{yz}\) Với mọi x,y,z >0
2) Cho x+y+z = 2019 ;x,y,z >0
Tìm GTNN của P = \(\frac{x}{x+\sqrt{2019x+yz}}+\frac{y}{y+\sqrt{2019y+xz}}+\frac{z}{z+\sqrt{2019z+xy}}\)
1. Cho x,y,z > 0. Chứng minh
\(\sqrt{x^2+xy+2y^2}+\sqrt{y^2+yz+2z^2}+\sqrt{z^2+zx+2x^2}\ge2\left(x+y+z\right)\)
Dạo này ko tag được đâu :(
\(VT=\sum\sqrt{\frac{1}{2}\left(x+y\right)^2+\frac{1}{2}\left(x^2+y^2\right)+y^2}\ge\sum\sqrt{\frac{1}{2}\left(x+y\right)^2+\frac{1}{4}\left(x+y\right)^2+y^2}\)
\(VT\ge\sum\sqrt{\frac{3}{4}\left(x+y\right)^2+y^2}\ge\sqrt{\frac{3}{4}\left(2x+2y+2z\right)^2+\left(x+y+z\right)^2}\)
(Mincopxki)
\(\Rightarrow VT\ge\sqrt{4\left(x+y+z\right)^2}=2\left(x+y+z\right)\)
Chứng minh:
a)x^2+y^2–2x+4y+6>0 với mọi x,y
b)2x^2+2x+3>0 với mọi x
c)x^2+y^2+z^2 ≥ xy+yz+xz với mọi x,y,z
a) \(x^2+y^2-2x+4y+6=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
b) \(2x^2+2x+3=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{5}{2}\)
\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}\ge\dfrac{5}{2}>0\forall x\)
c) \(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2+2xz+z^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\left(đúng\right)\)
\(ĐTXR\Leftrightarrow x=y=z\)
Cho x + y + z = 1 ; x , y , z > 0
CMR : \(\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}\) >/ 14
Cho x , y , z thuộc Z ; x,y,z khác 0 và \(\sqrt{x+y+z-2018}+\sqrt{2018\left(xy+yz+zx-xyz\right)}=0\)
Tính S = \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}\)
CÁC BẠN GIẢI GIÚP MÌNH CHI TIẾT BÀI NÀY VỚI !
Bài 1:Áp dụng C-S dạng engel
\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)
\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)
Cho x, y, z > 0 và x + y + z = 1. Chứng minh rằng: \(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\ge\sqrt{5}\)
\(VT=\sum\sqrt{\frac{1}{2}\left(x^2+2xy+y^2\right)+\frac{3}{2}\left(x^2+y^2\right)}\)
\(VT\ge\sum\sqrt{\frac{1}{2}\left(x+y\right)^2+\frac{3}{4}\left(x+y\right)^2}=\sum\sqrt{\frac{5}{4}\left(x+y\right)^2}\)
\(VT\ge\frac{\sqrt{5}}{2}\left(x+y\right)+\frac{\sqrt{5}}{2}\left(y+z\right)+\frac{\sqrt{5}}{2}\left(z+x\right)\)
\(VT\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
a, Cho x, y, z > 0 \(\in[0,1]\). Chứng minh:
\(\dfrac{x}{yz+1}+\dfrac{y}{xz+1}+\dfrac{z}{xy+1}< 2\)
b, x, y, z > 0 : xyz = 1. Chứng minh:
\(\dfrac{1}{x^2+2y+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\le2\)
cho x,y,z >0 và x+y+z=3
chứng minh : A = \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+z\text{x}+x^2}\ge3\sqrt{3}\)
Lời giải:
Áp dụng bất đẳng thức AM-GM:
\(x^2+xy+y^2=(x+y)^2-xy\geq (x+y)^2-\frac{(x+y)^2}{4}=\frac{3(x+y)^2}{4}\)
\(\Rightarrow \sqrt{x^2+xy+y^2}\geq \frac{\sqrt{3}}{2}(x+y)\)
Tương tự với các phân thức còn lại và cộng theo vế:
\(\Rightarrow A\geq \sqrt{3}(x+y+z)=3\sqrt{3}\) (đpcm)
Dấu $=$ xảy ra khi $x=y=z=1$
cho x,y,z>0 chứng minh rằng
\(\sqrt{\dfrac{x^2}{x^2+\dfrac{1}{4}xy+y^2}}+\sqrt{\dfrac{y^2}{y^2+\dfrac{1}{4}yz+z^2}}+\sqrt{\dfrac{z^2}{z^2+\dfrac{1}{4}zx+x^2}}\le2\)
\(A=\sqrt{\dfrac{x^2}{x^2+\dfrac{1}{4}xy+y^2}}+\sqrt{\dfrac{y^2}{y^2+\dfrac{1}{4}yz+z^2}}+\sqrt{\dfrac{z^2}{z^2+\dfrac{1}{4}zx+x^2}}\le2\)
\(\Leftrightarrow\sqrt{\dfrac{1}{1+\dfrac{y}{4x}+\dfrac{y^2}{x^2}}}+\sqrt{\dfrac{1}{1+\dfrac{z}{4y}+\dfrac{z^2}{y^2}}}+\sqrt{\dfrac{1}{1+\dfrac{x}{4z}+\dfrac{x^2}{z^2}}}\le2\)
Đặt \(\left\{{}\begin{matrix}\dfrac{y}{x}=a\\\dfrac{z}{y}=b\\\dfrac{x}{z}=c\end{matrix}\right.\) thì bài toán thành
Chứng minh: \(A=\dfrac{1}{\sqrt{4a^2+a+4}}+\dfrac{1}{\sqrt{4b^2+b+4}}+\dfrac{1}{\sqrt{4c^2+c+4}}\le1\) với \(abc=1\)
Thử giải bài toán mới này xem sao bác.
*C/m bài toán mới của HUngnguyen
Ta có BĐT phụ \(\dfrac{1}{\sqrt{4a^2+a+4}}\le\dfrac{a+1}{2\left(a^2+a+1\right)}\)
\(\Leftrightarrow\left(a+1\right)^2\left(4a^2+a+4\right)\ge4\left(a^2+a+1\right)^2\)
\(\Leftrightarrow a\left(a-1\right)^2\ge0\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\dfrac{1}{\sqrt{4b^2+b+4}}\le\dfrac{b+1}{2\left(b^2+b+1\right)};\dfrac{1}{\sqrt{4c^2+c+4}}\le\dfrac{c+1}{2\left(c^2+c+1\right)}\)
CỘng theo vế 3 BĐT trên ta có;
\(VT\le1=VP\) * Chỗ này tự giải chi tiết ra nhé, giờ bận rồi*
Bài này công kềnh vậy thôi thực ra nhìn cái là ra nó là hệ quả của BĐT Vasc của cụ Vasile Bat dang thuc Vasc.pdf
Cho \(\hept{\begin{cases}x,y,z>0\\xy+yz+zx=1\end{cases}}\). Chứng minh rằng:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge3+\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x^2}}+\sqrt{\frac{\left(y+z\right)\left(y+x\right)}{y^2}}+\sqrt{\frac{\left(z+x\right)\left(z+y\right)}{z^2}}\)
1111111111111111111
\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)
Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)
Là xong.
cho x,y,z>0 và x+y+z=1 chứng minh\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}\sqrt{yz}+\sqrt{zx}\)