Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hiếu
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 4 2021 lúc 22:09

Đề bài chắc chắn là có vấn đề

Thử với \(x=y=z=\dfrac{1}{3}\) thì \(VT=\dfrac{\sqrt{2}}{4}< 2\)

Nguyễn Việt Lâm
18 tháng 4 2021 lúc 22:37

Như bạn sửa điều kiện thành \(x^3+y^3+z^3=1\) thì dấu "=" không xảy ra

Việc chứng minh vế trái lớn hơn 2 (một cách tuyệt đối) khá đơn giản:

\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\ge\dfrac{x^3}{\dfrac{x^2+1-x^2}{2}}=2x^3\)

Làm tương tự với 2 số hạng còn lại, sau đó cộng vế

Nhưng đẳng thức không xảy ra.

ysssdr
Xem chi tiết
missing you =
29 tháng 1 2022 lúc 16:49

\(A=\dfrac{\sqrt{x^3+y^3+1}}{xy}+\dfrac{\sqrt{y^3+z^3+1}}{yz}+\dfrac{\sqrt{z^3+x^3+1}}{zx}\)

\(\dfrac{\sqrt{x^3+y^3+1}}{xy}=\dfrac{\sqrt{x^3+y^3+xyz}}{xy}\ge\dfrac{\sqrt{xy\left(x+y\right)+xyz}}{xy}=\dfrac{\sqrt{xy\left(x+y+z\right)}}{xy}\ge\dfrac{\sqrt{xy.3^3\sqrt{xyz}}}{xy}=\dfrac{\sqrt{3xy}}{xy}=\dfrac{\sqrt{3}}{\sqrt{xy}}\)

\(\dfrac{\sqrt{y^3+z^3+1}}{yz}\ge\dfrac{\sqrt{3}}{\sqrt{yz}}\)

\(\dfrac{\sqrt{z^3+x^3+1}}{zx}\ge\dfrac{\sqrt{3}}{\sqrt{zx}}\)

\(\Rightarrow A\ge\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\ge\sqrt{3}.3\sqrt[3]{\dfrac{1}{\sqrt{xy.yz.xz}}}=3\sqrt{3}.\sqrt[3]{\dfrac{1}{xyz}}=3\sqrt{3}\)

maighe
Xem chi tiết
Jenner
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 9 2021 lúc 21:37

Chắc là a;b;c hết chứ?

\(VT=\dfrac{a}{a+b+c+b-a}+\dfrac{b}{a+b+c+c-b}+\dfrac{c}{a+b+c+a-c}\)

\(VT=\dfrac{a}{c+2b}+\dfrac{b}{a+2c}+\dfrac{c}{b+2a}=\dfrac{a^2}{ac+2ab}+\dfrac{b^2}{ab+2bc}+\dfrac{c^2}{bc+2ac}\)

\(VT\ge\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=1\) (đpcm)

missing you =
11 tháng 9 2021 lúc 21:38

cho x,y,z>0 ,x+y+z=1 chu nhi?

\(\Rightarrow\dfrac{x}{x+y+z+y-x}=\dfrac{x}{2y+z}\)

\(\Rightarrow\dfrac{y}{1+z-y}=\dfrac{y}{x+y+z+z-y}=\dfrac{y}{2z+x}\)

\(\Rightarrow\dfrac{z}{1+x-z}=\dfrac{z}{x+y+z+x-z}=\dfrac{z}{2x+y}\)

\(\Rightarrow A=\dfrac{x}{2y+z}+\dfrac{y}{2z+x}+\dfrac{z}{2x+y}=\dfrac{x^2}{2xy+xz}+\dfrac{y^2}{2zy+xy}+\dfrac{z^2}{2xz+xz}\ge\dfrac{\left(x+y+z\right)^2}{3\left(xy+yz+xz\right)}=1\)

dau"=" xay ra<=>x=y=z=1/3

Hoàn Minh
Xem chi tiết
hilo
Xem chi tiết
๖²⁴ʱ乂ų✌й๏✌ρɾ๏༉
Xem chi tiết
Thanh Vân
Xem chi tiết
minhthu
Xem chi tiết