cho 3 số thực dương x,y,z thỏa mãn x+y+z=xyz
tìm giá trị lớn nhất của biểu thức p=\frac{1}{\sqrt{x^2+1}}\:+\frac{1}{\sqrt{\gamma ^2+1}}+\frac{1}{\sqrt{z^2+1}}
Cho các số thực dương x,y,z thỏa mãn:\(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\). Tìm GTNN của biểu thức:
T=\(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\) - (x-y)2-(x-z)2-(z-x)2
Cho \(x,y,z\ge0\)thỏa mãn \(x+y+z=2\) . Tìm giá trị lớn nhất của biểu thức:
\(P=\sqrt{2x+yz}+\sqrt{2y+xz}+\sqrt{2z+xy}\)
Cho x,y,z dương. Chứng minh \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\ge\sqrt{3}\left(x+y+z\right)\)
Cho x, y, z dương. Chứng minh rằng: \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\ge\sqrt{3}.\left(x+y+z\right)\)
Bài 1: cho a, b > 0 và a + b <= 1. CMR: \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}>=3\)
Bài 2: cho x, y, z >=0 thỏa mãn x + y + z >0. CMR: \(\dfrac{x}{4x+4y+z}+\dfrac{y}{4y+4z+x}+\dfrac{z}{4z+4x+y}< =\dfrac{1}{3}\)
Bài 3: cho x, y, z > 0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
Tìm GTNN của \(\dfrac{1}{\sqrt{2x^2+y^2+3}}+\dfrac{1}{\sqrt{2y^2+z^2+3}}+\dfrac{1}{\sqrt{2z^2}+x^2+3}\)
Cho x,y,z \(\ge\)0 thỏa mãn:
\(4x+2y+2z-4\sqrt{xy}-4\sqrt{xz}+2\sqrt{yz}-10\sqrt{z}-6\sqrt{y}+34=0\)
Tính giá trị của biểu thức M = (x-15)10+(y-8)6+(z-24)2017
Cho 3 số x, y, z dương TM: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\). CMR:
\(\sqrt{x+yz}+\sqrt{y+xz}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
a, Giải phương trình: 2\(\left(x-\sqrt{2x^2+5x-3}\right)=1+x\left(\sqrt{2x-1}-2\sqrt{x+3}\right)\)
b, Cho ba số thực dương a,b,c thỏa mãn a,b,c=1
Chứng minh rằng:\(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\le\dfrac{1}{2}\)