Chương III - Hệ hai phương trình bậc nhất hai ẩn

Jenner

Cho a,b,c > 0 thoả mãn: a+b+c=1
chứng minh rằng: \(\dfrac{x}{1+y-x}\)+\(\dfrac{y}{1+z-y}\)+\(\dfrac{z}{1+x-z}\)\(\ge1\)

Nguyễn Việt Lâm
11 tháng 9 2021 lúc 21:37

Chắc là a;b;c hết chứ?

\(VT=\dfrac{a}{a+b+c+b-a}+\dfrac{b}{a+b+c+c-b}+\dfrac{c}{a+b+c+a-c}\)

\(VT=\dfrac{a}{c+2b}+\dfrac{b}{a+2c}+\dfrac{c}{b+2a}=\dfrac{a^2}{ac+2ab}+\dfrac{b^2}{ab+2bc}+\dfrac{c^2}{bc+2ac}\)

\(VT\ge\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=1\) (đpcm)

Bình luận (0)
missing you =
11 tháng 9 2021 lúc 21:38

cho x,y,z>0 ,x+y+z=1 chu nhi?

\(\Rightarrow\dfrac{x}{x+y+z+y-x}=\dfrac{x}{2y+z}\)

\(\Rightarrow\dfrac{y}{1+z-y}=\dfrac{y}{x+y+z+z-y}=\dfrac{y}{2z+x}\)

\(\Rightarrow\dfrac{z}{1+x-z}=\dfrac{z}{x+y+z+x-z}=\dfrac{z}{2x+y}\)

\(\Rightarrow A=\dfrac{x}{2y+z}+\dfrac{y}{2z+x}+\dfrac{z}{2x+y}=\dfrac{x^2}{2xy+xz}+\dfrac{y^2}{2zy+xy}+\dfrac{z^2}{2xz+xz}\ge\dfrac{\left(x+y+z\right)^2}{3\left(xy+yz+xz\right)}=1\)

dau"=" xay ra<=>x=y=z=1/3

Bình luận (0)

Các câu hỏi tương tự
Nguyễn Thị Bích Thuỳ
Xem chi tiết
Nguyễn Tuấn Minh
Xem chi tiết
Nguyễn Võ Thảo VY
Xem chi tiết
Oriana.su
Xem chi tiết
Hoàng Duy Khánh Phan
Xem chi tiết
Nguyễn Võ Thảo VY
Xem chi tiết
Nguyễn Thị Bích Thuỳ
Xem chi tiết
Vũ Huyền
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết