Chứng minh bất đẳng thức
Cho x, y, z là các số dương (chứng minh hộ mình phần b) thôi)
a) CMR : \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
b) Cho x, y, z thỏa mãn : \(3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=12\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\)
CMR : \(\dfrac{1}{4x+y+z}+\dfrac{1}{x+4y+z}+\dfrac{1}{x+y+4z}\le\dfrac{1}{6}\)
Cho x>1, y>0, chứng minh :
\(\frac{1}{\left(x-1\right)^3}+\left(\frac{x-1}{y}\right)^3+\frac{1}{y^3}\ge3\left(\frac{3-2x}{x-1}+\frac{x}{y}\right)\)
Phân tích thành nhân tử :
1. \(x^2+xy\left(2y-1\right)=2y^3-2y^2-x\)
2. \(x\sqrt{x^2+y}+y=\sqrt{x^4+x^2}+x\)
3. \(x^4+x^3-11x^2+yx^2+\left(y-12\right)x=12-y\)
4. \(\sqrt{y-1}+2y^2+1=\sqrt{x}+x^2+xy+3y\)
Chứng minh \(\dfrac{1}{x^2+y+z}+\dfrac{1}{y^2+z+x}+\dfrac{1}{z^2+x+y}\ge\dfrac{3}{x+y+z}\)
1.Cho x, y \(\ge\)0 và x+ y=1
Chứng minh rằng : \(x^3+y^3\ge\dfrac{1}{4}\)
2. Cho \(a,b,c\ge0\).Chứng minh rằng:
a, \(a^3+b^3>ab\left(a+b\right)\)
b, \(a^3+b^3+c^3\ge a^2b+ b^2c+c^2a\)
3. Cho x+ y+ z=3 và x, y, z>0. Chứng minh rằng:
a, \(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{3}{2}\)
b, \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{3}{2}\)
Tính GTBT: \(M=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)\) biết
\(x=\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\)
\(y=\sqrt[3]{17+12\sqrt{2}}-\sqrt[3]{17-12\sqrt{2}}\)
giải hệ
a,\(\left\{{}\begin{matrix}\left(x+y\right)\left(x^2+y^2\right)=15\\\left(x-y\right)\left(x^2-y^2\right)=3\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}x^3-y^3=9\\x^2+2y^2=x-4y\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}\left(x-y\right)\left(2x+3y\right)=12\\6\left(x-y\right)+xy\left(x-y\right)=12\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x^2+y^2+1=2\left(x+y\right)\\y\left(2x-y\right)=\left(2y+1\right)\end{matrix}\right.\)
Cho x, y là hai số thực dương sao cho x + y= 1
Chứng minh: \(\dfrac{x}{1-x^2}+\dfrac{y}{1-y^2}\ge\dfrac{4}{3}\)