giải hệ phương trình \(\left\{{}\begin{matrix}x+xy+y=1\\y+yz+z=4\\z+xz+x=9\end{matrix}\right.\)
Giải hệ phương trình :\(\left\{{}\begin{matrix}x+xy+y=1\\y+yz+z=4\\z+xz+x=9\end{matrix}\right.\) trong đó x,y,z>0
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=2\\yz+y+z+1=5\\zx+z+x+1=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=5\\\left(z+1\right)\left(x+1\right)=10\end{matrix}\right.\) (1)
Nhân vế với vế: \(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=100\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=10\) (2)
Chia vế cho vế của (2) cho từng pt của (1):
\(\Rightarrow\left\{{}\begin{matrix}z+1=5\\x+1=2\\y+1=1\end{matrix}\right.\) \(\Rightarrow\left(x;y;z\right)=\left(1;0;4\right)\) (loại)
Hệ vô nghiệm do \(y>0\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+y^2+z^2=xy+yz+xz\\x^{2021}+y^{2021}+z^{2021}=3^{2022}\end{matrix}\right.\)
PT (1) \(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Nhận thấy VT\(\ge\)0 với mọi x,y,z
Dấu = xảy ra <=> x=y=z
Thay x=y=z vào pt (2) ta được:
\(3x^{2021}=3^{2022}\) \(\Leftrightarrow x^{2021}=3^{2021}\) \(\Leftrightarrow x=3\)
\(\Rightarrow x=y=z=3\)
Vậy (x;y;z)=(3;3;3)
giải hệ 1 \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)
2.\(\left\{{}\begin{matrix}xy-x-y=5\\yz-y-z=11\\zx-z-x=7\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\\y^2+xy-yz+z^2=0\\x^2-xy-xz-z^2=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)
Lấy (2) cộng (3) ta được
\(x^2+y^2-yz-zx=2\) (4)
Lấy (1) - (4) ta được
\(2x\left(x+z\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)
Xét 2 TH rồi thay vào tìm được y và z
1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)
Đến đây thì dễ rồi nhé
2. \(\left\{{}\begin{matrix}\left(xy-x\right)-\left(y-1\right)=6\\\left(yz-y\right)-\left(z-1\right)=12\\\left(zx-z\right)-\left(x-1\right)=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)=6\\\left(y-1\right)\left(z-1\right)=12\\\left(z-1\right)\left(x-1\right)=8\end{matrix}\right.\)
Đến đây dễ rồi
giải hệ phương trình
\(\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{3}{8}\\\dfrac{y+x}{yz}=\dfrac{3}{4}\\\dfrac{x+z}{xz}=\dfrac{5}{6}\end{matrix}\right.\)
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
\frac{1}{x}+\frac{1}{y}=\frac{3}{8}\\
\frac{1}{y}+\frac{1}{z}=\frac{3}{4}\\
\frac{1}{z}+\frac{1}{x}=\frac{5}{6}\end{matrix}\right.\Rightarrow 2(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{3}{8}+\frac{3}{4}+\frac{5}{6}\)
\(\Leftrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{47}{48}\)
\(\Rightarrow \left\{\begin{matrix} \frac{1}{z}=\frac{47}{48}-\frac{3}{8}\\ \frac{1}{x}=\frac{47}{48}-\frac{3}{4}\\ \frac{1}{y}=\frac{47}{48}-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{48}{29}\\ y=\frac{48}{11}\\ z=\frac{48}{7}\end{matrix}\right.\)
Giải hệ phương trình : \(\left\{{}\begin{matrix}x\left(x+y+z\right)+yz=238\\y\left(x+y+z\right)+xz=187\\z\left(x+y+z\right)+xy=154\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x\left(yz+1\right)=\frac{7}{3}z\\y\left(xz+1\right)=8x\\z\left(xy+1\right)=\frac{9}{2}y\end{matrix}\right.\)
Giải hệ phương trình : \(\left\{{}\begin{matrix}x^2+xy+xz=2\\y^2+yz+xy=3\\z^2+xz+yz=4\end{matrix}\right.\)
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} x(x+y+z)=2\\ y(y+z+x)=3\\ z(z+x+y)=4\end{matrix}\right.(*)\).
Dễ thấy $x+y+z\neq 0$. Khi đó ta có:
\(\frac{x}{y}=\frac{x(x+y+z)}{y(y+z+x)}=\frac{2}{3}(1)\)
\(\frac{y}{z}=\frac{y(y+z+x)}{z(z+x+y)}=\frac{3}{4}(2)\)
Từ \((1);(2)\Rightarrow \frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) .
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k; y=3k; z=4k\)
Thay vào PT thứ nhất của $(*)$ suy ra:
\(2k(2k+3k+4k)=2\)
\(\Leftrightarrow 18k^2=2\Rightarrow k=\pm \frac{1}{3}\)
Nếu \(k=\frac{1}{3}\Rightarrow (x,y,z)=(2k,3k,4k)=(\frac{2}{3}; 1; \frac{4}{3})\)
Nếu \(k=\frac{-1}{3}\Rightarrow (x,y,z)=(2k,3k,4k)=(\frac{-2}{3}; -1; \frac{-4}{3})\)
\(\left\{{}\begin{matrix}x+y+xy=3\\y+z+yz=1\\z+x+xz=1\end{matrix}\right.\). Giải hệ phương trình
\(hpt\Leftrightarrow\left\{{}\begin{matrix}x+y+xy+1=4\\y+z+yz+1=2\\x+z+xz+1=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=4\\\left(y+1\right)\left(z+1\right)=2\\\left(x+1\right)\left(z+1\right)=2\end{matrix}\right.\)
Lấy \(\dfrac{pt\left(2\right)}{pt\left(3\right)}\Leftrightarrow\dfrac{y+1}{x+1}=1\)\(\Leftrightarrow y+1=x+1\)\(\Leftrightarrow x=y\)
Thay vào \(pt(1)\)\(\Leftrightarrow x^2+2x=3\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=y=1\\x=y=-3\end{matrix}\right.\)
Thay vào \(pt\left(3\right)\)\(\Leftrightarrow\left[{}\begin{matrix}z+1+z=1\\z-3-3z=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}z=0\\z=-2\end{matrix}\right.\)
Vậy....
Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}x+y+z=9\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\\xy+yz+xz=27\end{matrix}\right.\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}=\dfrac{9}{9}=1\)
Dau bang xay ra khi x=y=z=3 ( vi x+y+z=9)